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The purpose of this work is twofold. In the first part we describe superfluidity/superconductivity as an
emergent phenomenon resulting from two-body correlations in presence of the Bose–Einstein condensation
of particles. We briefly discuss the underlying mechanism for bosons as well as fermion pairs and illustrate
various realizations of superfluidity emphasizing the recent examples. In the second part we study the glassy
liquid of incoherent pairs which might exist above the transition temperature Tc in the underdoped regime of
cuprate superconductors. In particular, we explore the angular variation of pseudogap within two-dimensional
version of the boson-fermion model using for a quantitative analysis the projective method. We find that above
Tc the pseudogap closes first near the nodal areas restoring there pieces (arcs) of the Fermi surface whereas
remaining parts of the large Fermi surface around the antinodal points are still absent due to incoherent pairs.
Upon increasing temperature the length of the Fermi arcs enlarges because the superconducting correlations
are gradually suppressed. An intriguing death of Fermi surface can thus be closely related to the Bogoliubov
quasiparticles whose existence in the pseudogap state has been predicted by us and confirmed recently by the
angle resolved photoemission spectroscopy measurements on Bi2Sr2CaCu2O8 and La1.895Sr0.105CuO4 compounds.

PACS numbers: 74.20.−z, 74.20.Mn, 74.40.–n

1. Preliminaries

Quantum statistical mechanics puts a strong empha-
sis on the crucial distinction between fermions obeying
the Pauli exclusion principle and bosons having no up-
per bounds for occupying any quantum state at hand.
Under specific conditions the latter can macroscopically
accommodate in the lowest energy level (for instance in
q = 0 momentum of the noninteracting uniform gas or
the zero frequency oscillator level E0 = 1

2~ω for the case
of magneto-optically trapped atoms). This phenomenon,
referred to as the Bose–Einstein condensation (BEC), has
been discovered for the first time in the superfluid state
of 4He. At temperatures far below the lambda transition
about 8% of helium atoms gets frozen to the condensate.
Recently, the development of trapping and cooling tech-
niques enabled production of the artificial condensates
for several atoms. Very dilute densities of the trapped
atoms ≈ 1014 cm−3 require that the quantum degener-
acy level is reached at ultracold temperatures, below µK.
Such stringent conditions have been so far achieved by
a dozen of groups worldwide and the presently available
experimental conditions allow for condensation of more
than 90% of the trapped atoms [1].

A direct realization of BEC among fermions is obvi-
ously prohibited. However, an equivalent phenomenon
can be obtained in two steps. First, one needs to combine
the initial fermions (at least some of their states located
near the Fermi level) into the pairs (composite bosons).
Depending on specific fermions the possible mechanisms
can range from e.g. the phonon mediated pairing in clas-
sical superconductors to any other effective attractions
— some examples will be discussed in Sect. 2.3. In the

second step, these fermion pairs brought to a single state
can become coherent showing up on the macroscopic level
a loss of their resistance etc.

The distinct statistical character of fermions and
bosons can be, sort of, unified by realization of their su-
perfluid/superconducting states. A deeper support for
this analogy has been given by Leggett (for a compre-
hensive discussion see Sect. 4.4 in Ref. [1]) who noticed
that structures of the ground state wave function in the
BEC of bosons and the BCS state of fermion pairs are
identical. A controlled realization of a crossover between
the bosonic and fermionic condensates (and their super-
fluid states) is presently attainable using the mixtures of
ultracold fermion atoms [2]. This fast developing disci-
pline might eventually serve as a testing field also for the
solid state physics, in particular clarifying the theoretical
aspects of high temperature superconductivity. One of
them is the questionable issue of incoherent fermion pairs
possibly existing above Tc in the underdoped regime, as
discussed in Sect. 3.

2. Basic remarks on superfluidity

2.1. Mechanism of the boson superfluidity

Although BEC is crucial for transition to the superfluid
state, yet such condition alone is not sufficient. Another
necessary ingredient is the long range coherence which
can eventually set on due to the correlations. To explain
this point let us consider the Hamiltonian of interacting
bosons

Ĥ =
∫

drΨ̂ †(r, t)
(
− ~

2

2m
∇2 + Vext(r)− µ

)
Ψ̂(r, t)

(204)
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+
1
2

∫
drdr′Ψ̂ †(r, t)Ψ̂ †(r′, t)U(r − r′)

×Ψ̂(r′, t)Ψ̂(r, t). (1)
If a fraction of particles is Bose–Einstein (BE) con-

densed, then the field operators Ψ̂(r, t) can be decom-
posed into

Ψ̂(r, t) = Φ(r, t) + δΨ̂(r, t). (2)
where Φ(r, t) describes macroscopic function of the con-
densate and δΨ̂(r, t) refers to the non-condensed bosons.

Substituting (2) to the Heisenberg equation and as-
suming the point-like scattering potential V (r − r′) =
gδ(r − r′) one obtains the following Gross–Pitaevskii
(GP) equation [3]:

i~
∂Φ(r, t)

∂t

=
[
−~

2∇2

2m
+ Vext(r) + gnc(r, t)− µ

]
Φ(r, t) , (3)

which describes the nonuniform and dynamic BE con-
densate fraction nc(r, t) = |Φ(r, t)|2. Solution of the
nonlinear GP equation (3) is not feasible by other than
numerical means, but we can point out some of its im-
portant consequences without resorting to the numerics.

Complex function Φ(r, t) of the condensate can be rep-
resented through its amplitude |Φ(r, t)| and phase θ(r, t)

Φ(r, t) =
√

nc(r, t)e iθ(r,t).

Using these variables, the density of superfluid current
jc(r, t) ≡ ~

2 i (Φ
∗∇Φ − Φ∇Φ∗) can be expressed as

jc(r, t) = ~nc(r, t)∇θ(r, t) . (4)
Equation (4) implies that the supercurrent is irrotational

∇× jc(r, t) = 0 (5)
unless singularities of the phase θ(r, t) are encountered.
Such type of topological defects leads to formation of
the quantized vortices which geometrically arrange them-
selves into the Abrikosov lattice [1, 3].

Rewriting (3) for the amplitude and phase one obtains
the following coupled equations:

∂

∂t
nc(r, t) +∇ · jc(r, t) = 0 , (6)

m

(
∂vc(r, t)

∂t
+∇v2

c (r, t)
2

)
= −∇ (Veff + gnc − µ) (7)

where Veff(r, t) = Vext(r) − ~2
2m
√

nc(r,t)
∇2

√
nc(r, t) and

the superfluid velocity given by vc(r, t) = ~
m∇θ(r, t).

The set of Eqs. (6), (7) is identical with the classical
hydrodynamics for an ideal liquid which has no viscosity.
In particular, the continuity constraint is expressed by (6)
and the, so-called, Josephson equation (7) reproduces the
Euler equation.

Hydrodynamic approach described above (which is
well justified for the collisionless limit) proves that indeed
BEC along with the correlations constitute the superflu-
idity. The corresponding phase transition itself is of the
second order-type and is related to the symmetry break-

ing caused by appearance of the off-diagonal long-range
order (ODLRO) which in the present context comes from
the nonvanishing expectation value 〈Ψ̂(r, t)〉 = Φ(r, t).

2.2. Superfluidity of the fermion pairs

To comment on the BEC and superfluidity of fermions
in some analogy to discussion of the preceding section let
us consider the mixture of spin σ =↑ and ↓ particles

Ĥ =
∫

dr
∑

σ

ĉ†σ(r, t)
[
−~

2∇2

2m
+ Vext(r)− µ

]
ĉσ(r, t)

+
1
2

∫
drdr′ĉ†↑(r, t)ĉ†↓(r

′, t)U(r − r′)

×ĉ↓(r′, t)ĉ↑(r, t) (8)
interacting by an attractive potential U(r−r′) < 0 whose
origin can be arbitrary. “Spins” denote symbolically the
quantum numbers, for instance in the case of ultracold
atoms trapped by potential Vext(r) corresponding to the
hyperfine configurations, for the confined quarks to col-
ors, for charge carriers in the solids either to electron
spins, orbital labels, or any other degrees of freedom.

A role similar to the boson operators (2) is for fermion
systems played by the pairing field

π̂(r, t) ≡
∫

dr′ĉ↓

(
r +

1
2
r′, t

)
ĉ↑

(
r − 1

2
r′, t

)
. (9)

If a macroscopic number of fermion pairs occupies the
single, lowest energy state we can decompose π̂(r, t) into
the condensate fraction and a remaining part correspond-
ing to “excited” pairs

π̂(r, t) = 〈π̂(r, t)〉+ δπ̂(r, t). (10)
The complex order parameter 〈π̂(r, t)〉 ≡ χ(r, t) is
responsible for ODLRO which is signified by non-
-vanishing asymptotics lim|r1−r2|→∞〈π̂(r1, t)π̂(r2, t)〉 =
χ∗(r1, t)χ(r2, t) 6= 0. As far as the “excited” fermion
pairs are concerned they are nearly irrelevant for a be-
havior of the superfluid fraction. However, their pres-
ence might show up indirectly affecting the single particle
spectrum by depleting the low energy states or bringing
the anomalous contributions to the diamagnetic as well
as charge response, especially near Tc.

For a quantitative determination of the superfluid frac-
tion nc(r, t) = |χ(r, t)|2 and the supercurrent one needs
to apply some approximations, because the Hamilto-
nian (8), quartic in the fermion operators, cannot be an-
alytically solved. The simplest possible treatment relies
on the Bogoliubov–de Gennes (BdG) ansatz

ĉ↑(r, t) =
∑

n

[
un(r, t)ˆ̃c↑,n + vn(r, t)ˆ̃c

†
↓,n

]
, (11)

ĉ†↓(r, t) =
∑

n

[
−v∗n(r, t)ˆ̃c↑,n + u∗n(r, t)ˆ̃c

†
↓,n

]
, (12)

where the complex coefficients un(r, t) and vn(r, t) can
be estimated requiring diagonal structure for the Hamil-
tonian (8) expressed in the new operators ˆ̃c

(†)
σ,n. This

BdG procedure has the mean field character neglecting
quantum fluctuations which are explicitly pointed out in
Sect. 3.1. They can be partly incorporated through a
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perturbative expansion around the saddle point but such
analysis is rather cumbersome. In the next section we will
sketch an alternative method which seems to be suitable
for the resonant Feshbach-type interactions.

Substituting the ansatz (11), (12) to the pair operator
(9) one obtains the spatially and time dependent order
parameter χ(r, t) [2]. It can be analytically shown [4]
that this BdG procedure (11), (12) is fully equivalent to
the Gross–Pitaevskii equation (3) applied to the macro-
scopic function χ(r, t). We hence conclude that BEC
of the correlated paired fermions leads to their dissipa-
tionless flow accompanied by other features of the su-
perfluid state such as the quantized vortices, collective
sound-wave modes, Josephson effect etc.

2.3. Survey of the quantum superfluids

There are known various examples of BEC and their
corresponding quantum superfluids. Here we point out
several realizations for the bosonic species.

a) Historically the first superfluid state has been
discovered for 4He below the lambda temperature
Tλ ≈ 2.17 K. Interactions between helium atoms
are however so strong that BE condensate is
considerably depleted and also the lifetimes of the
quasiparticles are strongly suppressed.

b) The exotic form of superfluidity can be achieved
for spins in the ferromagnetic materials, where the
elementary excitations (magnons) obey bosonic
statistics. The available experimental techniques
allow for a control of these quanta population (at
least over time scale on the order of seconds) so
that the magnon thermalization and formation of
BEC are possible. The emerging spin superfluidity
manifests itself by coherent transport of the
magnetization over macroscopic distances [5].

c) In semiconductors the conduction band electrons
do form the bound states (excitons) with the
valence band holes. These bosonic objects could
undergo the BE condensation, however some
obstacles arise due to their short lifetimes and very
diluted concentrations. The experimental signa-
tures of excitonic BEC has been recently reported
using the coupled quantum wells in the quasi-two-
-dimensional heterostructures of GaAs/AgAlAs [6].

d) Enormous activity has been also focused on pro-
ducing the condensates using the dilute quantum
gases of atoms in the magneto-optical traps (for
a list of bosonic atoms see e.g. Ref. [7]). Experi-
mental detection of BEC is done in such systems
by means of the time of flight measurements. De-
spite the extremely low temperatures, there can be
condensed beyond 90% of the trapped atoms (ten
times more than in 4He). A more difficult problem
is to see the superfluid features. So far the most
popular way was based on observation of quantum
vortices [8] but later also the dc and ac Josephson
effects were experimentally mastered [9].

Superfluidity of the composite bosons such as fermion
pairs can occur in plenty of situations. Let us list here
some representative examples.

a) In classical superconductors the phonon-mediated
attraction induces the Cooper pairs defined in
k-space between electrons on very large distances.
Appearance of these pairs is therefore simulta-
neously accompanied by the onset of ODLRO
which on macroscopic level yields the ideal dc
conductance and perfect diamagnetism.

b) Superfluid transition of the correlated charge
carriers in the high temperature superconductors
has a completely different character. Proximity of
the superconducting dome to the Mott insulator
indicates that the paring mechanism of cuprate
oxides is non-retarded. It probably originates
from the sole Coulomb repulsion which effec-
tively induces the antiferromagnetic exchange [10]
leading to the intersite d-wave pairing. Besides
this rather obvious and widely accepted scenario
there are still many controversies with regard to
the pseudogap state above Tc. One of popular
interpretations assigns it to the preformed pairs
whose long-range coherence is absent because of
the small superfluid stiffness and/or other sorts of
quantum fluctuations. We shall come back to this
issue in the next Sect. 3.

c) Exotic forms of superconductivity can be realized
in the high energy physics of quarks. Since quarks
strongly attract each other, expectation of their
color superfluidity seems to be natural [11]. Masses
of the confined quarks differ a lot, therefore there
could appear certain unusual kinds of superfluid-
ity such as the Larkin–Ovchinnikov–Fulde–Ferrell
phase (where pairs have a non-zero total momen-
tum) or the breached superfluidity [12] where pair-
ing engages the light quarks from a vicinity of the
Fermi energy and the heavy quarks located deep
under εF (this, so-called, “interior” superfluidity
can be further generalized on the “exterior” case).

Such two groups of superfluids are mixed with one an-
other in the case of ultracold fermion atoms. Part of
the atoms form the shallow bound states, i.e. bosonic
molecules (closed channel) and the rest exists as the sin-
gle fermions (open channel). Energy cost of both con-
figurations can be varied applying the external magnetic
field. In particular, when energy of the closed channel
matches the open channel, there appears a strong reso-
nant scattering [2]. This resonant Fesbhach mechanism
enabled a smooth evolution between the molecular BEC
and the BCS state of the open channel. Convenient tool
for a description of the Feshbach resonances is the two
component boson-fermion model [13].
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3. Pairing in the cuprates

Measurements by the angle resolved photoemission
spectroscopy (ARPES) have unambiguously established
that the high temperature superconductors (HTSC) be-
low transition temperature Tc have roughly the usual
BCS properties [14]. The recent ARPES experiments
[15, 16] provide an intriguing evidence that even in the
normal state there exist the Bogoliubov-type quasiparti-
cles typically known only for the superconductors. We
have predicted such effect [17] on a basis of the phe-
nomenological boson-fermion model which fairly well ac-
counts for the strong pairing correlations.

Although there is no consensus on a nature of the pseu-
dogap [18], these recent ARPES data [15, 16] and the
proximity effect induced in the nanosize metallic slabs
deposited on La2−xSrxCuO4 seen for T > Tc [19] as well
as the earlier studies [20] strongly support its interpreta-
tion as the precursor pairing effect. Preformed pairs are
assumed to form already in the normal state but transi-
tion to the superfluidity can occur at lower temperatures
upon their BE condensation establishing the long-range
coherence [21]. Besides the cuprate superconductors such
scenario takes place also in the ultracold atomic gases of
Li6 and K40 [2]. Near the Feshbach resonance the weakly
bound boson molecules are scattered into the Cooper-like
pairs and this unitary limit, between the BCS and BEC
regimes, is affected by the strong pairing fluctuations [1].

In this section we explore the two-dimensional version
of the boson-fermion model [22] for a realistic set pa-
rameters treating the itinerant fermions and their paired
counterparts in the self-consistent way. We analyze the
angular dependence of pseudogap and signatures of the
Bogoliubov quasiparticles above Tc showing that the su-
perconducting correlations can destroy parts of the large
Fermi surface leading to death of the Fermi surface [23].

3.1. Model for the resonant pairing

Hamiltonian of the boson-fermion (BF) model [22] for
the uniform systems is given by

Ĥ =
∑

k,σ

(εk − µ) ĉ†kσ ĉkσ +
∑

q

(Eq − 2µ) b̂†q b̂q

+
1√
N

∑

k,q

(
gk,q b̂†q ĉq−k↓ĉk↑ + g∗k,q ĉ†k↑ĉ

†
q−k↓b̂q

)
, (13)

where operators ĉ
(†)
kσ annihilate (create) the single

fermions with energy εk and b̂
(†)
q correspond to the lo-

cal pairs of energy Eq. Coupling between the single and
paired fermions is denoted by gk,q. We assume that con-
centration of pairs per lattice site is small enough so that
b̂
(†)
q can be treated as the usual boson operators (neglect-
ing the hard-core effect). Such model (13) has been in-
vented [22] prior to discovery of the HTCS materials and
so far its properties have been analyzed by a number of
groups [24].

In cuprate superconductors the itinerant charge car-
riers get combined into the intersite (d-wave symmetry)

pairs purely because of the strong on-site Coulomb re-
pulsion between the opposite spin fermions. “Locality
of pairs” should hence be understood as defined on the
bonds [25] (like in the resonant valence band (RVB) the-
ory [26]) rather than literary on the original lattice sites.
However, no matter what a specific pairing mechanism
is, the model (13) is useful for determination of the ef-
fective low-energy physics because the operators b̂(†) can
be interpreted e.g. as the auxiliary boson fields originat-
ing from the exact Hubbard–Stratonovic transformation
applied in the pairing channel to the correlated fermions.
Most of the studies discussed so far in the literature have
adopted various many-body techniques directly to the
correlated fermions. Nonetheless, this fact stands in no
conflict with the simplified two-component scenario (13).
Actually it also turned out to be a very convenient tool
for description of the ultracold fermion atoms resonantly
interacting through the Feshbach mechanism [27].

The potential of boson-fermion interactions can be ex-
pressed in a more compact form using the following pair
operators:

B̂q =
∑

k

gk,q ĉq−k↓ĉk↑ , B̂†
q = (B̂q)† , (14)

which simplify the charge exchange term to

V̂ B–F =
1√
N

∑
q

(
b̂†qB̂q + B̂†

q b̂q

)
. (15)

On the mean-field level one usually approximates the in-
teraction by its linearized structure

V̂ B–F '
∑

k

[
gk,0

〈b̂†0〉√
N

ĉ−k↓ĉk↑ +
1√
N

b̂†0〈B̂0〉+ H.c.

]

− 1√
N

(
〈b†0〉〈B0〉+ 〈b0〉〈B†

0〉
)

. (16)

neglecting the contributions from

(a) finite momentum pairs 1√
N

∑
q 6=0(b̂†qB̂q + H.c.),

(b) fluctuations of condensed pairs δb̂†0√
N

δB̂0 + δb̂0√
N

δB̂†
0,

where δb̂0 = b̂0 − 〈b̂0〉 and δB̂0 = B̂0 − 〈B̂0〉.
The linearized B–F interaction (16) formally decouples

the boson from fermion parts which under such condi-
tions become exactly diagonalizable [24]. In consequence,
the single particle spectrum of fermions acquires then the
conventional BCS structure AMF(k, ω) = u2

kδ(ω−Ek) +
v2

kδ(ω + Ek) with the Bogoliubov-type quasiparticle en-
ergy Ek =

√
(εk − µ)2 + ∆2

k and the usual coherence
factors given by u2

k, v2
k = 1

2 [1 ± (εk − µ)/Ek]. The en-
ergy gap is given by ∆k = gk,0

√
〈nB

0 〉 which means that
fermions undergo transition to the superconducting state
simultaneously with the BE condensation of bosons [22].
The latter property is exact [28] without limitations to
any approximation.

Obviously, the mean-field treatment neither takes into
account the fluctuations δĤ0 nor the finite momentum
pairs δĤ ′. Efficiency of such terms is expected to increase
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upon approaching Tc in the underdoped regime. We shall
discuss major effects arising from these ingredients.

3.2. Beyond the mean field framework

To go beyond the mean field scheme there can be im-
plemented various techniques dealing with the terms δĤ ′

and δĤ0 mainly in a perturbative manner (see for in-
stance [29] and other references cited therein). Here we
proceed guided by the RG-like algorithm [30]. The pro-
jective character of our approach can be illustrated as
follows: we propose to redefine the Bogoliubov transfor-
mation by adding new terms corresponding to scattering
of fermions on the finite momentum pairs b̂

(†)
q 6=0. We pre-

sume that such pairs can exist below as well as above
Tc, although in the latter case the ODLRO is going to
disappear because of lack of the BE condensate. We thus
propose the following ansatz (its formal derivation is dis-
cussed in Sect. 3.2)

ˆ̃ck↑ = ukĉk↑ + vkĉ†−k↓

+
1√
N

∑

q 6=0

(
uk,q b̂†q ĉq+k↑ + vk,q b̂qc†q−k↓

)

+
1
N

∑

q,q′ 6=0

(
uk,q,q′ b̂

†
q b̂−q′ ĉq+q′+k↑

+vk,q,q′ b̂q b̂†−q′c
†
q+q′−k↓

)
+ O(b̂3) , (17)

ˆ̃c
†
−k↓ = −v∗kĉk↑ + u∗kĉ†−k↓

+
1√
N

∑

q 6=0

(
−v∗k,q b̂†q ĉq+k↑ + u∗k,q b̂q ĉ†q−k↓

)

+
1
N

∑

q,q′ 6=0

(
−v∗k,q,q′ b̂

†
q b̂−q′ ĉq+q′+k↑

+u∗k,q,q′ b̂q b̂†−q′c
†
q+q′−k↓

)
+ O(b̂3). (18)

Scattering terms involving three and more pair operators
are omitted because they are expected to be less proba-
ble. Equations (17), (18) must be supplemented by the

corresponding ansatz for the boson operators ˆ̃
b
(†)
q [31].

Let us remark that operators b̂
(†)
0 referring to the BE

condensed pairs simplify below Tc to complex numbers.
Formally, we can thus interpret the coefficient vk as re-
sulting from the scattering on BE condensed bosons, i.e.
vk,0

b̂0√
N
. We use however vk to have a clear correspon-

dence of (17), (18) to the standard Bogoliubov transfor-
mation (11), (12).

To determine all the coefficients u and v we ought to
fulfill the sum-rule (anticommutation relations between
the new introduced operators). This will be done in the
next subsection by means of the self-consistent flow equa-
tion procedure. Here, let us concentrate on the generic
outcome of our proposal (17), (18). The single particle
spectrum of fermions takes the following form:

A(k, ω) = |uk|2δ
(
ω − EF

k

)
+ |vk|2δ

(
ω + EF

−k

)

+
1
N

∑

q 6=0

[
|uk,q|2α(1)

k,qδ
(
ω − EF

q+k + EB
q

)

+|vk,q|2β(1)
k,qδ

(
ω + EF

q−k − EB
q

)]

+N−2
∑

q,q′ 6=0

[
|uk,q,q′ |2α(2)

k,q,q′δ
(
ω − EF

q+q′+k

+EB
q + EB

q

)
+ |vk,q,q′ |2β(2)

k,q,q′

δ
(
ω + EF

q+q′−k − EB
q − EB

q′
)]

+ O(b̂3) . (19)
Here EF

k and EB
q denote the effective excitation ener-

gies of fermions and bosons and coefficients α, β can
be expressed by the occupancies of fermion and boson
particles. Deep in a superconducting state fermions are
characterized by the gaped Bogoliubov dispersion (while
bosons develop the collective acoustic mode) therefore
the spectral function contains some features due to scat-
tering only outside the superconducting gap. Upon in-
creasing temperature the number of thermally excited (fi-
nite momentum) bosons increases and this produces char-
acteristic features in A(k, ω). In particular, above Tc the
term |vk|2 completely vanishes but the low-lying bosons
give the overdamped fermion branch located along the
shadow part of quasiparticle branch ω ' −EF

k through
the contributions of |vk,q|2.

3.3. The self-consistent procedure

A fully self-consistent method for studying the model
(13) can be constructed by the continuous canonical
transformation procedure Ĥ −→ eŜ(l)Ĥ e−Ŝ(l), where l
is some formal parameter [30]. The main idea is to elim-
inate the interaction part gk,q through a sequence of in-
finitesimal steps l → l + δl. Proceeding along the lines
of the renormalization group (RG) technique one starts
from renormalizing the high energy sector and subse-
quently turns to the low energy sector, by latter we mean
the fermion states close to µ and boson states near 2 µ.

Practically we start by setting Ĥ(l) ≡ eŜ(l)Ĥ e−Ŝ(l),
where Ĥ(0) corresponds to the initial Hamiltonian, and
then construct the flow equation ∂lĤ(l) = [η̂(l), Ĥ(l)]
with the generating operator η̂(l) ≡ ∂lŜ(l). Following
the original proposal of Wegner [30] we choose η̂(l) =
[Ĥ0(l), V̂ B–F(l)], where Ĥ0(l) denotes the total kinetic
energy of fermions and bosons whereas V̂ B−F(l) stands
for their interaction. From a straightforward algebra we
obtain η̂(l) = − 1√

N

∑
k,q αk,q(l)(b†qcq−k↓ck↑−H.c.) with

αk,q(l) = (εk(l) + εq−k(l) − Eq(l))gk,q(l). We have pre-
viously shown [32] that such antihermitian operator η̂(l)
guarantees an asymptotic disappearance of the boson-
-fermion coupling liml→∞ gk,q(l) = 0.

Applying this scheme to the BF Hamilto-
nian (13) we obtain the following set of cou-
pled flow equations: ∂lgk,q(l) = −α2

k,q(l)gk,q(l),
∂lεk(l) = 2

N

∑
q αk,q(l)|gk,q(l)|2nB

q and ∂lEq(l) =
2
N

∑
k αk−q,k(l)|gk−q,k(l)|2(−1 + nF

k−q↓ + nF
k↑) [32]. We

have solved them numerically for the itinerant fermions
and immobile bosons on the two-dimensional lattice.
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The fixed point values
lim
l→∞

εk(l) ≡ ε̃k , lim
l→∞

Eq(l) ≡ Ẽq (20)

have shown the following properties: (a) below Tc the
renormalized fermion dispersion ε̃k develops a true gap
at µ which evolves into a pseudogap for Tc < T , (b) the
effective boson dispersion Ẽq shows the long-wavelength
Goldstone mode for T < Tc and its remnants are
preserved even in the pseudogap state [17].

For a complete information about the fermion and
boson spectra we must work out transformations for
the individual operators ĉ

(†)
kσ(l) ≡ eŜ(l)ĉ

(†)
kσ e−Ŝ(l) and

b̂
(†)
q (l) ≡ eŜ(l)b̂

(†)
q e−Ŝ(l) which is a rather difficult task

because Ŝ(l) is not known explicitly. Since our primary
interest is in the single particle fermion excitations, we
focus on the flow equation ∂lĉ

(†)
kσ(l) = [η̂, ĉ

(†)
kσ(l)]. The

generating operator η̂(l) chosen according to Wegner’s
prescription [30] yields the following ansatz for fermion
operators [17]:

ĉk↑(l) = uk(l)ĉk↑ + vk(l)ĉ†−k↓

+
1√
N

∑

q 6=0

[
uk,q(l)b̂†q ĉq+k↑ + vk,q(l)b̂q ĉ†q−k↓

]
, (21)

ĉ†−k↓(l) = −v∗k(l)ĉk↑ + u∗k(l)ĉ†−k↓

+
1√
N

∑

q 6=0

[
−v∗k,q(l)b̂†q ĉq+k↑ + u∗k,q(l)b̂q ĉ†q−k↓

]
, (22)

where uk(0) = 1 and all other coefficients are vanishing
at l = 0. The l-dependent coefficients must be deter-
mined from the following set of flow equations [17]:

∂luk(l) =
√

nB
q=0α−k,0(l)vk(l)

+
1
N

∑

q 6=0

αq−k,q(l)
(
nB

q + nF
q−k↓

)
vk,q(l), (23)

∂lvk(l) = −
√

nB
q=0αk,0(l)uk(l)

− 1
N

∑

q 6=0

αk,q(l)
(
nB

q + nF
q+k↑

)
uk,q(l), (24)

∂luk,q = α−k,q(l)vk(l) , (25)

∂lvk,q = −αk,q(l)uk(l) . (26)
We have solved them numerically along with equations
∂lεk(l), ∂lEq(l), ∂lgk,q(l) for the 2-dimensional square
lattice with the initial (l = 0) tight-binding dispersion

εk = −2t [cos(kxa) + cos(kya)]

− 4t′cos(kxa)cos(kya) (27)
(we set a ≡ 1). We assumed the discrete boson energy
Eq(0) = E0 and imposed gk,q(0) = g[cos(kxa)−cos(kya)]
in order to reproduce the d-wave symmetry of energy
gap below Tc. We have solved iteratively the cou-
pled flow equations using the Runge–Kutta method for

E0(0) = 0.2t for the fixed total charge concentration
ntot = 2

∑
q nB

q +
∑

k(nF
k↑+nF

k↓). The number of fermions
per lattice site nF = 1 − p corresponds then roughly to
p ≈ 0.1 (see Fig. 1).

Fig. 1. Fermi surface of the noninteracting electrons
for two-dimensional lattice described by (27) with the
next-nearest neighbor hopping t′/t = −0.4.

Our ansatz (21), (22) yields the effective single parti-
cle spectral function with the structure given in Eq. (19)
neglecting terms of the order of O(b̂2) and the coef-
ficients corresponding the fixed point values l → ∞.
Spectral function (19) indicates that besides the nar-
row peaks (long-lived states) there also forms a back-
ground of the damped (finite lifetime) states. If we
neglect uk,q and vk,q then the flow equations (23),

(24) simplify to ∂luk(l) =
√

nB
q=0α−k,0(l)vk(l) and

∂lvk(l) = −
√

nB
q=0αk,0(l)uk(l) yielding the invariance

|vk(l)|2 + |vk(l)|2 = 1. By rewriting the first equa-
tion as

∫ uk(∞)=ũk
uk(0)=1

duk(l)√
1−|uk(l)|2 =

√
nB

q=0

∫∞
0

α−k,0(l)dl

we then right away reproduce the mean-field solution

ũk, ṽk = 1
2

(
1± εk−µ√

(εk−µ)2+nB
0 |gk,0|2

)
. The effect of scat-

tering on the finite momentum pairs affects (19) through
the coefficients ũk,q and ṽk,q. We shall do it for T > Tc.

3.4. Bogoliubov quasiparticles above Tc

In the normal state the BE condensate does not exist
〈b̂q=0〉 = 0, therefore Eqs. (24), (25) analytically imply
that vk(l) = 0 = uk,q(l). In consequence (21), (22) sim-
plify to

ĉk↑(l) = uk(l)ĉk↑ +
1√
N

∑

q 6=0

vk,q(l)b̂q ĉ†q−k↓ , (28)

ĉ†−k↓(l) = − 1√
N

∑

q 6=0

v∗k,q(l)b̂†q ĉq+k↑ + u∗k(l)ĉ†−k↓ , (29)

and under such conditions the lowest order estimation
(but beyond the mean field level) of the spectral func-
tion (19) is given by
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A(k, ω) = |ũk|2δ (ω + µ− ε̃k)

+
1
N

∑

q 6=0

(
nB

q + nF
q−k↓

) |ṽk,q|2

×δ(ω − µ + ε̃q−k − Ẽq) + O(b̂2). (30)
It consists of the delta peak corresponding to the long-

-lived quasiparticle state at ε̃k−µ whose spectral weight
is |ũ2

k| < 1 and the remaining weight shared between the
damped fermion states.

Fig. 2. The effective fermion spectrum in the pseudo-
gap regime obtained for T = 0.007D > Tc with D ≡ 8t.
The thin dashed line shows the renormalized dispersion
of the narrow quasiparticle at ω = ε̃k − µ whereas the
areas marked by colors illustrate the damped states. No-
tice that the Bogoliubov features are pronounced for the
states aside the nodal direction.

Fig. 3. Angular dependence of the pseudogap obtained
above Tc for the same set of parameters as in Fig. 2.

Above Tc the quasiparticle peak continuously traverses
the Fermi surface but approaching Tc its weight |ũk|2
is suppressed nearby kF. We can notice in Fig. 2 that
among the background states (which are almost insen-
sitive to temperature) there is a certain fraction built
around ω = −(ε̃k − µ) for momenta located near the
Fermi surface. Such branch of the excitations being a
mirror reflection to the quasiparticle peak ε̃k − µ is the
shadow branch of the Bogoliubov-type dispersion. Such
quasiparticles, reminiscent of the superconducting state,
have been indeed observed in the ARPES experiments of
the Argonne [15] and the Swiss PSI [16] groups.

We have also evaluated the one-particle spectral func-
tion for momentum vectors k intersecting kF at various
positions. The planar angle φ corresponds here to direc-
tion between the vector k − (π, π) and the line starting
from [π, π] to [π, 0].

We have found that pseudogap disappears above Tc

starting from the nodal points. As an illustration we
show in Fig. 3 the angular variation of the pseudogap de-
termined for T = 0.007D. The partial closure of the
φ-dependent pseudogap leads to reconstruction of the
Fermi surface pieces. We checked that length on these
Fermi arcs is linearly increasing with respect to T − Tc.
A more detailed analysis of these properties will be dis-
cussed separately [33].

4. Summary

Besides the general remarks on the quantum super-
fluids for the boson and fermion systems we have ana-
lyzed in some detail the effect of superconducting fluctu-
ations above the transition temperature assuming that
the single fermions coexist and interact with the pre-
formed pairs. Influence of fermion pairs on the single
particle excitation spectrum was studied by means of
the self-consistent RG-like method [30]. We have found
that near kF the renormalized dispersion ε̃k leads to the
pseudogap and additionally there appears a shadow part
of the Bogoliubov-type dispersion near ω = −(ε̃k − µ).
This kind of features have been in fact seen in the recent
ARPES measurements. It thus seems natural that ab-
sence of the large Fermi surface could be simply related
to the pairing correlation, which the symmetry reasons
are most effective in the antinodal areas.
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