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In the present study, the acoustic characteristics of coupled rooms were investigated using the computer
modelling application based on the modal expansion method. A numerical procedure enables the computation of
shape and frequency of eigenmodes, and allows one to predict sound decay times at any point of a room space.
Results of numerical simulation have shown that along with a change in a coupling area the effect of a mode
degeneration appeared and there are two main reasons for this. First, a mode degeneration is associated with a
convergence of frequencies of neighbouring modes with a decrease of coupling area. Another reason for the mode
degeneration are variations in a sequence of modes with a change in the coupling area. It was demonstrated
that in the coupled rooms several modes exhibit a considerable localization. A degree of mode localization was
described theoretically by the “existence surface” of mode and it was found that the localization phenomenon
has a great effect on the reverberation process because for some absorbing material distributions it caused the
double–slope decay characterized by steep initial and slow late sound decays.

PACS numbers: 43.55.Br, 43.55.Ka, 43.20.Ks

1. Introduction

Acoustical properties of coupled rooms have long been
investigated in the context of architectural acoustics [1–4]
because several closed spaces actually consist of smaller
partial rooms which are coupled together. The orchestra
pit and balconies in opera houses or theatres coupled to
the main floor as well as churches with several naves and
chapels are typical examples of architectural objects hav-
ing a structure of coupled rooms. In order to obtain bet-
ter understanding and control of acoustics in such room
systems it is vital to have an efficient theoretical or com-
putational method for predicting a structure of acoustic
field in coupled rooms.

The geometric theory [5], the modal expansion
method, known also as the modal analysis [6], ray–tracing
techniques [7], and statistical or diffusion models [8, 9] are
main methods for determining the acoustics of irregularly
shaped rooms. However, the geometric theory at best ap-
plies to enclosures with dimensions large compared to the
wavelength. Moreover, this method neglects diffraction
phenomena since a propagation in straight lines is its
main postulate. A theory more adequate from the phys-
ical point of view but more difficult is the modal analysis
because it bases upon the wave acoustics. The wave ap-
proach can be used in a low–frequency range, thus this
theory has a practical application for enclosures having
dimensions comparable with the sound wavelength.

In the modal expansion method the response of a room
to a harmonic excitation can be understood in terms of
its normal modes and the associated decay constant of
each of these modes [10]. For small sound absorption on

room walls the coupling between modes may be neglected
and a distribution of mode amplitude can be well de-
scribed by the eigenfunction for rigid room walls [11]. As
distinct from regular rooms, such rectangular, triangular
or cylindrical ones, in coupled rooms the amplitudes of
rigid–walled modes and their frequencies are not defin-
able analytically, therefore an application of modal anal-
ysis to such room systems was possible through numerical
methods.

Fig. 1. Horizontal cross–sections of analyzed coupled–
room systems A and B.

The subject of the present paper is a numerical simula-
tion of acoustical properties of two–room coupled systems
having the same height h, but different shape of horizon-
tal cross–sections (Fig. 1). Proportions of room dimen-
sions are the following: l1/l = 0.5, l2/l = 0.1, l3/l = 0.4,
d1/l = 0.8, d2/d1 = 0− 0.95, d3/l = 0.64, d4/l = 0.6 and
h/l = 0.3, where l = l1 + l2 + l3. In the room system
denoted by A the effect of a mode degeneration occur-
ring due to a change in a coupling area was investigated.
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In the room system B consisting of two rectangular sub-
rooms (in Fig. 1 denoted by 1 and 2) a phenomenon of
mode localization and the effect of double–slope sound
decay were analyzed. In a simulation program, the modal
expansion for weakly damped rooms and the numerical
technique being an extension of computational methods
presented by the author in papers [12–14] were used.

2. Theoretical background and numerical
method

A description of acoustical field in coupled rooms, hav-
ing dimensions comparable with a length of acoustic
wave, is based of a solution of the wave equation with
specified initial and boundary conditions [10]. In this
case a reverberation behaviour of room can be under-
stood as a decay of normal acoustic modes determined by
eigenfunctions Φmn(r) and eigenfrequencies ωmn, where
r = (x, y, z) is a position vector and m = 0, 1, 2, 3 . . . and
n = 0, 1, 2, 3 . . . When a source term in the wave equa-
tion has the form −q(r) cos(ωt), where q(r) and ω are
a spatial distribution and a frequency of source, the ex-
pression describing temporal decay of sound pressure can
be written as [12]

p(r, t) = −Q00 e−2r00t
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where ξ00 = 0 and ξmn = 1 for the other values of m
and n, V is a room volume, Q00 and Qmn are factors
determining a sound source intensity
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where c is a sound speed, r00 and rmn are modal damp-
ing coefficients
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where ρ is an air density, S is a surface of room walls and
Z is a wall impedance. The phase shift αmn in Eq. (1) is
given by

αmn = tan−1

[
rmn(ω2
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Ωmn(ω2
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]
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where Ωmn =
√

ω2
mn − r2

mn is the eigenfrequency for
damped oscillations. The functions Φmn depend on
a room shape and are mutually coupled through the
impedance condition on absorbing walls, but for low fre-
quencies, where materials are characterized by a low ab-
sorption (<e(Z/ρc) ¿ 1), it is possible to assume that
a distribution of mode amplitude is well approximated

by uncoupled eigenfunctions computed for perfectly rigid
room walls [11]. For rooms having a constant height these
eigenfunctions can be determined by

Φmn(r) =

{
Ψn(x, y)/

√
h, m = 0,√

2/h cos(mπz/h)Ψn(x, y), m > 0.
(5)

where functions Φmn are normalized in the room vol-
ume V , h is the room height and eigenfunctions Ψn

are normalized over the surface S0 of a room horizontal
cross–section and Ψ0 = 1/

√
S0. In this case eigenfre-

quencies ωmn are given by
ωmn =

√
(ml/h)2 + ω2

n , (6)
where ωn is a non–dimensional eigenfrequency corre-
sponding to the function Ψn and ω0 = 0. For the anal-
ysed room systems eigenfunctions Ψn and eigenfrequen-
cies ωn were calculated numerically by the use of the
forced oscillator method [15] with a finite difference al-
gorithm. This method is based on the principle that a
response of linear system to a periodic excitation is large
when a driving frequency is close to a frequency of eigen-
mode.

3. Acoustical behaviour of coupled rooms

Using the numerical procedure, some interesting as-
pects of the acoustics in coupled rooms have been inves-
tigated. For the room system A (Fig. 1) it was analysed
the occurrence of mode degeneration due to a change
in the coupling area. The effect of mode localization
was investigated in the room system B by means of the
so–called “existence surface” of mode which character-
izes an irregular distribution of mode amplitude inside a
room space. It was shown that the mode localization has
a great influence on the reverberation process because
for some absorbing material distributions it causes the
double–slope sound decay.

3.1. Mode degeneration

Calculation data shown in Fig. 2 depict changes in the
non–dimensional eigenfrequency Ωn = ωn/ωr with the
parameter ∆/d1 for mode numbers n of 11–13 and 19–22,
where ωr = πc/l is a fundamental resonance frequency
of the room system A and ∆ = d1 − d2 is a measure
of size of the coupling area. For modes 12 and 13 one
can observe a very interesting behaviour of eigenmode
frequency, namely a coincidence of frequencies of neigh-
bouring modes with a decrease of coupling area (Fig. 2a).
Explanation of this phenomenon can be found in Fig. 3
presenting shapes of eigenfunctions Ψn for modes 12 and
13 for three different values of the non–dimensional pa-
rameter ∆/d1. The plots in Fig. 3 are in a form of filled
contour maps, which are a two–dimensional representa-
tion of three–dimensional data, where contours define
lines of constant value of Ψn. As ∆/d1 decreases, fre-
quencies of these modes approach each other and finally,
for value of ∆/d1 close to zero they become a pair of de-
generate eigenmodes. Since an energy of these modes is
concentrated in the first or the second part of a room,
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they represent also a pair of localized eigenmodes. The
graphs in Fig. 2 also indicate that a change in a coupling
area can force such variations of eigenmode frequency
that changes, in a sequence of neighbouring modes on a
frequency axis, occur. Consequently, the curves obtained
for some neighbouring eigenmodes intersect, thus for val-
ues of ∆/d1 corresponding to intersection points there
exist pairs of degenerate eigenmodes.

Fig. 2. Dependence of non–dimensional eigenfre-
quency Ωn on parameter ∆/d1 for mode numbers n:
(a) 11–13, (b) 19–22.

Fig. 3. Shapes of eigenfunctions Ψn for modes 12 and
13 for parameter ∆/d1 equal to 0.1, 0.5 and 1.

3.2. Localization of modes

In coupled rooms there exists a physical mechanism,
namely mode localization, that for some eigenmodes cre-
ates such a distribution of mode amplitude that its en-
ergy is concentrated in a small part of a room space.
This effect is a direct result of an irregular room ge-
ometry because in a rectangular room all eigenmodes
are delocalized. In coupled enclosures having a constant
height, the mode localization is a consequence of a com-
plex shape of room horizontal cross–section. Thus, this
phenomenon is connected with an irregular distribution
of functions Ψn in (x, y) plane hence it may be treated

as two–dimensional problem. In this case the mode lo-
calization can be characterized by the “existence surface”
of mode defined as [16]

Sn =
[∫

S0

Ψ4
n(x, y)dxdy

]−1

. (7)

In accordance with this definition, an eigenmode can be
treated as being localized whenever the relative existence
surface Sn/S0 is found to be significantly smaller than
unity. For example, in a rectangle, where all eigenmodes
are delocalized, the parameter Sn/S0 equals unity for
Helmholtz mode, 2/3 for axial modes and 4/9 for oblique
modes. In Fig. 4 is depicted a dependence of the relative
existence surface on the non–dimensional eigenfrequency
Ωn and as may be seen, the irregular shape of room sys-
tem B generates a considerable mode localization because
for several modes the parameter Sn/S0 has a value less
than 0.3. Nearly twice as small value of Sn/S0 is found
for mode 37 (Ωn ≈ 7.55), for which the highest degree
of mode localization is noted. Examples of computed
shapes of function Ψn, for strongly localized eigenmodes,
are shown in Fig. 5. From these plots it can be concluded
that a high mode localization is accompanied with a con-
centration of mode energy in the first or the second sub-
room. This property has a practical aspect because the
localization effect is of great importance in the process
of sound decay, when there is a large difference between
the absorption coefficient of walls in various parts of the
room. In this case for frequencies of these eigenmodes,
which are localized in the part of room where the sound
absorption is much smaller, the non–linear decay of a
sound pressure level may occur [17].

Fig. 4. Relative existence surface Sn/S0 versus non–
dimensional frequency Ωn for coupled–room system B
(dots). Horizontal lines at 2/3 and 4/9 correspond to
values of Sn/S0 for rectangle.

3.3. Double–slope sound decay

For a given frequency, a position and a distribution
of sound source, Eqs. (1)–(4) enable to predict the re-
verberation time at each point of room system B from
calculated energy decay curves corresponding to a time
history of the sound pressure level. In a computational
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Fig. 5. Shapes of eigenfunctions Ψn for mode numbers:
(a) n = 27, (b) n = 37.

simulation it was assumed that the sound source is lo-
cated in the subroom 1, whereas the observation point
lies in the subroom 2. For a sake of model simplicity,
the wall impedance Z was assumed to be purely real, i.e.
the mass and stiffness of the absorbing material are ne-
glected. This corresponds to a damping of a sound wave
on the room wall with no phase change upon a reflec-
tion. In order to examine an influence of walls absorp-
tion on the process of sound decay, in numerical anal-
ysis it was assumed that the random–absorption coeffi-
cient α1 of material on walls in the subroom 1 and the
random–absorption coefficient α2 of material on walls in
the subroom 2 were selected in this way, so that the to-
tal room absorption A = αS remained constant, where
α is the average random–absorption coefficient of mate-
rials on room walls. In the numerical simulation it was
assumed that α = 0.15, thus the coefficients α1 and α2

were changing quantities. Since Eq. (1) for the sound
pressure includes harmonic terms, the regression method
was used to compute time–average decay curves of the
pressure level L. To obtain enough data for a regression
analysis, temporal changes in the pressure level were de-
termined with the time interval 10−4 s and calculations
were performed as long as a drop of the pressure level L
was smaller than 120 dB.

The process of a creation of the double–slope decay is
illustrated in Fig. 6, where pressure level decays (black
lines) in one observation point together with fit curves
(white lines) obtained for a sound frequency equal to the
eigenfrequency of mode 37 and different absorption coeffi-
cients α1 and α2 in the first and the second subrooms are
shown. When values of α1 and α2 are equal, a fit curve
obtained via the regression method demonstrates a lin-
ear dependence on the time (Fig. 6a) and it means that
a sound pressure has an exponential decay. For growing
difference between α1 and α2 fit curves become more and
more non–linear (Fig. 6b,c) and for the largest difference
between absorption coefficients the fit curve consists of
two parts referring to the rapid early decay and the slow
late decay (Fig. 6d), which constitutes the double–slope
decay of a pressure level.

A steep initial sound decay may result in higher sound
clarity, whereas a slow late decay leads to an increase
in perceived reverberation [18], thus from a subjective

Fig. 6. Sound pressure level (black lines) and decay
curves obtained via regression method (white lines)
for absorption coefficients: (a) α1 = α2 = 0.15, (b)
α1 = 0.22, α2 = 0.046, (c) α1 = 0.23, α2 = 0.031,
(d) α1 = 0.24, α2 = 0.016. Source frequency equal to
frequency of mode 37.

viewpoint the standard reverberation time (the time for a
sound to die away to a level 60 dB below its original level)
appears to misleading measure of the double–slope decay.
In this case, to quantify decay profiles accurately, the
early decay time (EDT) and the late decay time (LDT)
should be computed, where EDT is 60 dB decay time
calculated by a line fit to a portion of decay curve between
0 and −10 dB and LDT is 60 dB decay time predicted
from the decay between −50 and −60 dB.

4. Conclusions

In low–frequency range the coupled rooms exhibit some
interesting effects like: a mode degeneration, a confine-
ment of acoustic vibrations in a small part of room sys-
tem, known as the localization of modes, and a consid-
erable difference between a rate of sound decay in early
and late stages of a reverberant process, which leads to
the so–called double–slope sound decay. In this study,
such effects were investigated using a simulation proce-
dure based on the classical modal expansion. In a the-
oretical model it was assumed that a room system is
lightly damped so a pressure variable was expanded in
“hard box modes” that is, the normal modes for which
boundary conditions are rigid walls. Eigenfunctions were
computed numerically via application of the forced oscil-
lator method with a finite difference algorithm. Results
of computer simulation have shown that along with a
change in a coupling area the effect of a mode degener-
ation appeared and there are two main reasons for this.
Firstly, the degeneracy is connected with a gradual con-
vergence of frequencies of neighbouring modes with a de-
crease of coupling area and this kind of mode degenera-
tion is associated with the localization of modes. Another
reason for the mode degeneration are variations in a se-
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quence of modes with a modification of a coupling area.
In this case, frequencies of modes are equal to each other
just before a change in a sequence of modes. A degree of
mode localization was characterized mathematically by
the “existence surface” of mode and it was found that as
opposed to rectangular rooms, in coupled rooms several
eigenmodes reveal a considerable localization. As was
shown, the localization of modes has a great influence
on a reverberation behaviour in coupled rooms because
for some absorbing material distributions it caused the
double–slope decay characterized by rapid early and slow
late sound decays, thus, the curve describing a decay of
sound intensity exhibited the so–called “sagging” appear-
ance.
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