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Secondary Radiation Field Effects for the CEM Spectra
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The secondary resonant radiation field and resonant absorption thickness effects on the Conversion Electron
Mössbauer Spectroscopy spectra are analyzed for highly enriched resonant targets. It is shown that secondary field
effect is important for the thick α-Fe foil enriched in the resonant isotope. Even for the polycrystalline sample
traces of the coherent resonant field have been detected as the distortion of lines. Secondary field is discussed
in detail. Suitable approximations to treat spectra originating from targets with significant resonant thickness
developing secondary field composed of the incoherent and coherent parts are introduced. Finally, the formalism
is applied to the high quality spectrum recorded for the enriched iron foil and correlation between contribution
due to the secondary field and experimental line shape is investigated.

PACS numbers: 76.80.+y, 82.80.Ej, 23.20.Nx, 42.40.Kw

1. Introduction

Usually Mössbauer spectra recorded by means of the
secondary radiation emerging from the resonant target
illuminated by the resonant beam are analyzed in the
thin target (Lorentzian) approximation. Such approach
is particularly justified while using back scattered sec-
ondary electrons to detect the signal. Electrons follow-
ing resonant absorption originate either via the inter-
nal conversion or follow from the subsequent emission
of the Auger electrons and eventually further emission
of some various secondary electrons. The appearance of
electrons following single absorption event is bunched on
the time scale, of course. The Lorentzian approximation
is justified due to the very short range of electrons in
comparison with the absorption range of the resonant
photon beam [1–3]. However, highly enriched targets
cannot be described in the thin target limit. Hence,
one has to take into account perturbations of the line
shape due to the secondary (and eventually higher or-
der) fields [4, 5]. Therefore additional contribution to
the line shape emerges and it resembles similar effects
observed by using resonant detectors in the transmission
geometry [3, 6–8] except dispersion terms, the latter be-
ing absent in the transmission geometry for the low en-
ergy M1 transitions. Some part of the secondary (and
higher order) resonant field is coherent with the origi-
nal field coming from the external source [9–11]. The
presence of such contribution is the basis of the γ-ray
holography in single crystals [12–15]. The effect is much
smaller in the polycrystalline targets, but not absent en-
tirely provided targets are highly enriched and eventually
magnetized. The interference between primary and co-
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herent secondary fields leads to the line asymmetry [15].
The aim of the present contribution is to study highly
enriched target, as such targets are essential to perform
successfully γ-ray holography. On the other hand, one
has to understand properly line shape modifications due
to the coherent secondary field in order to obtain proper
holographic reconstruction of the atomic positions.

The paper is organized as follows: Section 2 is de-
voted to the discussion of the secondary resonant radi-
ation field, Section 3 deals with the evaluation of the
(CEMS) and related spectra by suitable and realistic pa-
rameterization, and finally Section 4 is devoted to the
evaluation of the Conversion Electron Mössbauer (CEM)
spectrum recorded for the thick and highly enriched α-Fe
foil. The last section summarizes important conclusions.

2. Secondary resonant radiation field
in the CEM spectra

Secondary (and eventually higher order) radiation field
in the scattering experiment is due to the absorption
of the primary field (single photon) and subsequent re-
-emission of the single photon. Some part of the sec-
ondary field is due to the elastic (coherent) Rayleigh
scattering of the primary resonant field by the electrons
— mainly atomic cores. A secondary photon could be
absorbed again provided it has been emitted/scattered
without recoil. The primary field is due to a photon
emitted without recoil during transition between spec-
ified excited state of the nucleus and the ground state
of this nucleus. The latter process occurs in the exter-
nal source. Usually, one can neglect higher order fields
than secondary as the intensity of the subsequent fields
is getting rapidly smaller due to the electron conversion
and emission/scattering with recoil. The secondary field
adds to the primary field in either coherent or incoherent
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way. A coherent contribution comes from decays leading
to the same state as the original ground state of the reso-
nant nucleus, while the incoherent contribution is due to
decays leading to different ground state than the original
state. A coherent contribution is also due to the Rayleigh
recoilless scattering by electrons.

Transition amplitude for the resonant absorption of the
single photon, from the ground nuclear state |λg〉 to the
excited nuclear state |λe〉, could be described by the fol-
lowing matrix element provided both of the above states
are described by the semi-classical hyperfine Hamiltoni-
ans [16]:

〈λe|T (q, ε)|λg〉 =
√

p(λg)f(q)
∑

Lk

∑
memg

〈λe|Ieme〉

×〈Ieme|T (Lp)
Mk (q, ε)|Igmg〉〈Igmg|λg〉 . (1)

Symbols λg and λe denote respective eigenvalues of
the hyperfine Hamiltonians, the symbol q stands for the
wave–vector transfer to the system, while ε denotes unit
vector perpendicular to the wave–vector transfer and
describing polarization of the absorbed single photon.
A function p(λg) stands for the initial occupation of the
|λg〉 state (it is assumed that practically all nuclei remain
in the ground state). Except for the lowest temperatures
one can assume that the following condition is satisfied
p(λg) = (2Ig + 1)−1. The function f(q) stands for the
recoilless fraction dependent on the wave–vector transfer
to the system. The symbol L ≥ 1 stands for the angu-
lar momentum of the absorbed radiation, while the index
k = ±1 enumerates two polarization states of radiation.
Symbols Ig and Ie denote nuclear spins in the ground
and excited state, respectively, while mg and me stand
for the respective nuclear magnetic quantum numbers.
The symbol p denotes nuclear transition parity, and fi-
nally M = me − mg stands for the magnetic quantum
number of the absorbed photon, while the symbol T de-
notes multi-pole transition operator. Eigenvectors of the
respective hyperfine Hamiltonians satisfy the following
orthogonality condition:∑

m

〈λ|Im〉〈Im|λ′〉 = δλλ′ . (2)

The symbol δλλ′ stands for the Kronecker symbol. Multi-
-pole operator satisfies standard selection rules, i.e.,
M = 0, 1, . . . , L and |Ie − Ig| ≤ L ≤ Ie + Ig. Respec-
tive nuclear magnetic quantum numbers satisfy condi-
tion −I ≤ m ≤ I. The amplitude for nuclear resonant
absorption takes on the form [13]:

A(ω|q, ε) =
Γ
2

∑

λeλg

〈λe|T (q, ε)|λg〉

× Γ/2− i [ω − (λe − λg)]
(Γ/2)2 + [ω − (λe − λg)]2

=
∑

λeλg

A(ω|λe, λg|q, ε) . (3)

Here the symbol Γ stands for the half-width of the reso-
nant line, while ω denotes ambient energy.

Excited nucleus could decay into the ground state via
emission of the recoilless single photon. The amplitude
for such process is expressed as follows:

〈λ′g|T (q′, ε′)|λe〉 =

√
bf(q′)
1 + α

∑

L′k′

∑

m′
em′

g

[
〈λ′g|Igm

′
g〉

×〈Igm
′
g|T (L′p)

M ′k′ (q
′, ε′)|Iem

′
e〉〈Iem

′
e|λe〉

]
. (4)

The symbol b stands for the branching ratio leading from
the excited state to the respective ground nuclear state
(for the first excited state b = 1), while α denotes to-
tal conversion coefficient for the nuclear transition in-
volved. Total amplitude for nuclear excitation and de-
cay to the resonant radiative state can be expressed as
〈λ′g|T (q′, ε′)|λe〉〈λe|T (q, ε)|λg〉. The process is coherent
provided the following condition is satisfied λ′g = λg.
Otherwise re-radiated field is incoherent with the orig-
inal excitation electromagnetic field.

Let us assume that the sample is illuminated by the
primary resonant radiation coming from the unpolarized
single line and resonantly thin source. One can assume
that primary field is due to single decay in the source [13].
Amplitude of such radiation at the average position of
the absorbing nucleus has the following form for distant
source:

A0(ω − v|z|q, ε) =

√
Γ
2π

(
Γ/2− i(ω − v)

(Γ/2)2 + (ω − v)2

)

× exp
(
−Nσ

2
[A(ω|q, ε) + (A + iB)]z

)

× exp
(
−µz

2

)
. (5)

Here the symbol v stands for the first order Doppler shift
applied along the primary beam (all spectral shifts are
taken with respect to the source of primary resonant ra-
diation). The symbol N stands for the density of the
resonant nuclei within the target and σ stands for the
nuclear cross-section for the resonant absorption. Sym-
bols A and B stand for the real and imaginary part of the
amplitude (divided by

√
σ) responsible for the recoilless

Rayleigh scattering by the electrons (here mainly core
electrons of the atoms — the majority of them being
resonant). Above amplitude has very small admixture
of the nuclear Thomson and Delbrück amplitudes. The
symbol z denotes length of the path traveled by the pri-
mary beam within the target prior to being absorbed.
A decrement µ describes resonant beam attenuation due
to the incoherent non-resonant processes. Let us assume
that all resonant atoms are equivalent to each other and
that they fill completely regular positions of the Bravais
lattice, the latter lattice having definite orientation with
respect to the incoming primary resonant beam. It is
assumed that other scattering centers than the resonant
atoms could be neglected. Coherent excitation amplitude
of the nucleus located on the average at the origin is due
to the primary field and coherent part of the secondary
field. It could be expressed as follows:
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ACoh(ω − v|z|q, ε) =
√

σA0(ω − v|z|q, ε)A(ω|q, ε)

+
√

σ
∑

n

A0(ω − v|zn|q, ε)[A(ω| − qn, εn)

+A + iB]
∑

λeλg

〈λg|T (qn, εn)|λe〉A(ω|λe, λg|q, ε)

× exp
(
− 1

2
Nσ[A(ω| − qn, εn)

+(A + iB)]
√

Rn ·Rn

)

×exp
(
i [(qn − q) ·Rn + q(zn − z)]

)
√

(4π)Rn ·Rn

× exp
(
− 1

2
µ
√

Rn ·Rn

)
with q = |q| . (6)

The summation goes over all lattice sites n except origin.
The symbol Rn denotes position of the average particular
lattice site with respect to the (relative) origin, while qn

is the wave–vector of the secondary resonant radiation
being co-axial with Rn. The first term is responsible
for the excitation by the primary field, while the second
term is responsible for the excitation by the secondary
coherent field including coherent elastic field due to the
Rayleigh scattering. The latter field is generated by all
resonant nuclei in the target except the nucleus at the
origin and by distant electrons. One has to note that the
amplitude for the Rayleigh scattering depends on q− qn

and polarization of the incoming and outgoing radiation.
The incoherent excitation amplitude due to some dis-

tant resonant nucleus could be expressed as follows for
the same wave–vector transfer and polarization as for the
coherent excitation amplitude (it is assumed that elastic
incoherent Rayleigh field is almost negligible):

AInc(ω − v|n, zn, λg, λ
′
g|q, ε)

=
√

σA0(ω − v|zn|q, ε)A(ω| − qn, εn)

×exp
(− 1

2
Nσ[A(ω′| − qn, εn) + (A + iB)]

√
Rn ·Rn

)
√

(4π)Rn ·Rn

× exp
(
− 1

2
µ
√

Rn ·Rn

)(
1− δλgλ′g

)

×
∑

λe

〈λ′g|T (qn, εn)|λe〉A(ω|λe, λg|q, ε), (7)

with ω′ = ω + (λg − λ′g) and λg 6= λ′g.
Finally, excited nucleus decays to some of the ground

hyperfine states via emission of the conversion electron
(either without or with recoil). The conversion process
occurs for one of the available electronic states of the
resonant atom. This process is partly coherent with the
emission of the photoelectron from the same electronic
state.

Total cross-section for the emission of the electron by
the resonant atom due to particular polarization and

wave–vector transfer from the incoherent field is obtained
as:

SInc(ω − v|z|q, ε) =
∑

n

∑

λgλ′g

× (
A∗Inc(ω − v|n, zn, λg, λ

′
g|q, ε)F ∗

)
(

1 β0

β∗0 0

)

×
(

AInc(ω − v|n, zn, λg, λ
′
g|q, ε)

F

)
. (8)

Here the symbol F denotes complex amplitude for the
emission of the photoelectron, while the symbol β0 de-
notes projection parameter of the amplitude F on the
nuclear amplitude with β0β

∗
0 ≤ 1. Corresponding cross-

-section due to the coherent field takes on the form:
SCoh(ω − v|z|q, ε) = (A∗Coh(ω − v|z|q, ε)F ∗)

×
(

1 β0

β∗0 0

)(
ACoh(ω − v|z|q, ε)

F

)
. (9)

Complete cross-section describing emission of the elec-
tron due to the above processes (coherent and incoherent)
is expressed as proportional to:

S(ω − v|z|q, ε) = SCoh(ω − v|z|q, ε)

+ SInc(ω − v|z|q, ε) . (10)
One has to note that the amplitude F might depend on
the particular ground hyperfine-state in the magnetically
ordered target [17–19] due to the spin polarization of the
s-like electron shells of the resonant atom. However this
effect is negligible provided all conversion electrons are
counted instead of the electrons emerging from the outer
shells. The latter partial coherency has local character,
as it occurs within the atomic shell of the resonant atom.
This local coherence is particularly strong for E1 nuclear
transitions as photo-effect and Rayleigh scattering occurs
mainly via the E1 interaction for low energy photons.

The last expression has to be averaged over all po-
larization states of the photons involved and integrated
over the ambient energy and photon paths. One has to
introduce probability for the electron emergence from the
target as well. Hence, one obtains finally:

S(v, q) =
∫ +∞

−∞
dω

∫
dz P (z)〈S(ω − v|z|q, ε)〉{εn},ε .

(11)
Here the function P (z) stands for the probability den-
sity function for the electron generated at the depth z
to reach the detector and to be registered. The bracket
〈. . .〉 denotes averaging operation.

Total signal from the detector takes on the following
form provided detector behaves linearly and the source
motion amplitude is small compared to the source–target
distance:

P (v, q) = B0 + A0

[
S(v, q)/σ

]
. (12)

Here the parameter B0 stands for the number of counts
due to detector background, while A0 denotes overall
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phenomenological spectrum amplitude. The above for-
malism could be easily extended for multiple sites of the
resonant atom and/or to the higher than secondary order
fields [13, 15]. For any significant kind of disorder within
the target on the mesoscopic scale one has to perform
further averaging of the Eq. (12), i.e.:

P (v) = (4π)−1

∫ 2π

0

dφ

∫ π

0

dθ sin θP (θ, φ)P (v, q) (13)

with q =
√

q · q




sin θ cosφ

sin θ sin φ

cos θ


. Here the function

P (θ, φ) denotes probability density function for a partic-
ular orientation of the crystal (including magnetic struc-
ture) versus incoming beam. Angles θ and φ denote polar
and azimuthal angle, respectively in the chosen uniquely
co-ordinate system. Usually integration of the Eq. (13)
has to involve some partial averaging over the ensemble
{Rn, qn} as the secondary field could propagate from one
to another crystallite (domain).

Equation (12) is the basis of the γ-ray holography with
the external reference wave and internal detector [12–15].
Basically, the useful information about atomic positions
is contained in the line shape. This shape varies with the
wave–vector transfer to the system, i.e., with the varying
beam orientation versus single crystal axes.

3. Evaluation of the CEM spectra originating
in the highly enriched target

It is obvious that above formalism is too complex to
be directly applicable to process real spectra. Such situa-
tion is due to the very complex character of the secondary
resonant field propagation in the highly enriched targets.
Fortunately one can simplify above general description
for particular situations. Things are getting simpler for
almost completely resolved hyperfine lines, pure nuclear
transitions connecting ground state with the first excited
state and for diagonal hyperfine Hamiltonians with com-
pletely lifted degeneracy. In particular for the low energy
nuclear M1 transition amplitudes for the Rayleigh scat-
tering and photoelectron emission are almost orthogonal
to the nuclear emission/absorption amplitude. Hence,
one can set β0 = 0 without introducing errors. One
can neglect as well interference between decay into ra-
diative channel and Rayleigh scattering amplitudes on
the resonant atom being final detector. Hence, one has
Lorentzian shape for absorption in the transmission ge-
ometry in such cases [20–22].

Let us consider almost monochromatic radiation beam,
the latter beam having negligible divergence and negli-
gible polarization. Let the beam falls on the flat and
macroscopically homogeneous target, the latter target
having very large thickness and being composed of the
more or less randomly oriented crystallites on the macro-
scopic scale. It is assumed that the beam axis makes the
right angle with the target surface. Hence, the signal
from the secondary radiation detector P (v) due to the

secondary radiation emerging from the target could be
approximated as follows provided the detector remains
in the linear regime and the distance between the source
of radiation and the target remains almost constant at
any time:

P (v) = B0 + S0N

∫ +∞

−∞
dω ρ(ω − v) [σRT (ω) + σ0]

×
∫ +∞

0

dz p(z) exp
(−N [σRT (ω) + σ0] z

)
. (14)

The symbol S0 stands for the amplitude of the useful sig-
nal, while the function ρ(ω−v) denotes density of the res-
onant radiation from the source versus frequency ω and
applied first order Doppler shift v along the beam axis.
The symbol σR denotes effective cross-section for the res-
onant absorption of the photon by the nucleus i.e. it de-
pends on the recoilless fraction for the incoming beam.
The symbol σ0 stands for the cross-section for the non-
-resonant absorption, and T (ω) denotes resonant absorp-
tion profile within the target and versus frequency ω, i.e.,
T (ω) describes dependence of the absorption on the am-
bient energy. A condition |T (ω)| ≤ 1 is always satisfied.
The function p(z) denotes probability of the secondary
radiation to emerge from the target versus depth from
the target surface, the latter depth being denoted by z.
It is convenient to use dimensionless function p(z) in-
stead of previously described function P (z). Remaining
symbols have the same meaning as in the previous sec-
tion. For single line source characterized by the negligible
resonant self-absorption one has the following radiation
density in accordance with Eq. (5):

ρ(ω − v) =
(

Γs

2π

)(
1

(Γs/2)2 + (ω − v)2

)
, (15)

where
∫ +∞
−∞ dωρ(ω − v) = 1 and the symbol Γs stands

for the half-width of the emitted resonant line. For
many cases probability for the secondary non-resonant
radiation emergence from the target takes on the form
p(z) = exp(−NσAz). Here the symbol σA denotes effec-
tive cross-section for the secondary radiation absorption
in the target. The above function is quite accurate for
secondary photons having well defined energy and ap-
proximate for secondary electrons of any kind [3, 23].
Under such circumstances Eq. (14) could be transformed
to the following form upon having performed integration
over target thickness:

P (v) = B0 +
(

S0σ0

σ0 + σA

)
+ A

∫ +∞

−∞
dω ρ(ω − v)

× T (ω)
1 + βT (ω)

= B0 +
(

S0σ0

σ0 + σA

)
+ A

(
Γs

2π

)

×
∫ +∞

−∞
dω

1
(Γs/2)2 + (ω − v)2

T (ω)
1 + βT (ω)

. (16)

Phenomenological parameter β > 0 (for β = 0 one
obtains exact thin target approximation) is defined as
β = σR/(σ0 + σA) > 0. One obtains reasonable thin tar-
get approximation for β ¿ 1. Another phenomenological
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parameter is defined as A = S0β. Hence, the number of
counts per data channel far off the resonance amounts to:
C0 = B0 + S0σ0/(σ0 + σA).

One has to note that Eq. (16) allows for non-Lorentzian
primary radiation densities as well [24, 25]. Actually sin-
gle line spectra remain Lorentzian, albeit the line broad-
ens with the increasing parameter β. For multiple line
spectra relative intensities depend on β, i.e., they tend
to equalize for large values of β.

For highly enriched sample one can expect significant
secondary resonant radiation field [4, 5]. Usually one can
neglect other radiation than resonantly scattered radi-
ation and elastic Rayleigh scattered radiation for such
situation [13]. Under such circumstances the function
T (ω) could be expressed as follows:

T (ω) = N−1
0

K∑
κ=1

Cκ

(
Γ0

Γκ(1 + δκ)

)

×
[

(Γκ/2)2

(Γκ/2)2 + (ω − ωκ)2

(
1−

(
2ψκ

Γκ

)
(ω − ωκ)

)

+δκ

(
(Γκ/2)2

(Γκ/2)2 + (ω − ωκ)2

)2

×
(

1−
(

2ϕκ

Γκ

)
(ω − ωκ)

) ]
(17)

with N0 =
∑K

κ=1 Cκ. The summation goes over all lines.
The parameter Γ0 stands for the natural half width of
the transition, the symbol Γκ denotes half-width of the
particular line, while the symbol ωκ stands for the posi-
tion of this line. Relative intensities of subsequent lines
are described by parameters Cκ ≥ 0. Secondary field
(originating by the nuclear scattering) contributing to
the particular line is described by the parameter δκ. It is
assumed that all local interference terms (on the resonant
atom undergoing final decay by emission of the conver-
sion electron) due to the Rayleigh scattering amplitude
and emission of the photoelectron are absent. A contri-
bution due to the coherent part of the secondary field
is accounted for in the first order approximation by in-
troduction of the term depending on the parameter ϕκ.
The latter parameter could vary from line to line as vari-
ous lines have different contributions due to the coherent
secondary field. Similar parameters ψκ account for the
interference of the primary field with the coherent part
of the secondary field on the nucleus undergoing sub-
sequent decay via emission of the conversion electron.
Namely, terms ψκ are responsible for the interference of
the primary resonant field with the elastic Rayleigh field
due to the distant electrons, while terms ϕκ are responsi-
ble for the interference between coherent secondary res-
onant field (of the nuclear origin) and above Rayleigh
field. These terms are present due to the fact that elastic
Rayleigh field coming from distant electrons is able to
excite resonant nucleus.

3.1. Case of metallic iron
A resonant transition we are interested in occurs in

57Fe between the ground state and first excited state
lying 14.41 keV above the ground state of this stable
nucleus. It is practically pure M1 transition between
Ig = 1

2

(−) and Ie = 3
2

(−) nuclear states. Metallic iron
has BCC structure at room temperature and it is very
soft ferromagnetic material with the easy axis of mag-
netization aligned with one of the edges of the chemical
unit cell. Hence, the hyperfine splitting is due to the
pure magnetic dipole interaction between nuclear mag-
netic moment and the unique hyperfine magnetic field on
the iron nucleus. Line positions depend on the magnetic
coupling in the ground state, on the magnetic coupling
in the excited state, and total shift versus applied single
line (unpolarized) source. Magnetic splitting is sufficient
to resolve almost completely particular lines. All absorp-
tion lines are Lorentzian in shape, and therefore Eq. (17)
applies here. The line pattern is shown in Fig. 1. For
completely random orientation of the magnetic domains
one obtains the following ratio of the subsequent line in-
tensities 3:2:1:1:2:3 as the recoilless fraction is practically
isotropic here. However iron foils tend to acquire some
preferential magnetization due to the shape anisotropy.
They are usually partly magnetized in the foil plane, i.e.,
perpendicular to the incoming beam of radiation. Some
additional in-plane magnetization might occur due to the
surface anisotropy. The latter contribution is seen in the
CEM spectra, as the signal comes from the relatively
thin layer located close to the sample surface. This ef-
fect could be accounted for by introduction of the g111

11

element of the reduced irreducible tensor gL0LL′
MM ′ . The

latter element is real number and the previously intro-
duced intensities transform into the following set of cor-
rected intensities 3g111

11 : 2 : g111
11 : g111

11 : 2 : 3g111
11 .

Elements gL0LL′
MM ′ are defined as gL0LL′

MM ′ = αLL′
MM ′/αL0L0

00 ,
where L0 = min{L} and the following relationship holds
[26, 27]:

αLL′
MM ′ =

√
(2L + 1)(2L′ + 1)

8π

×
∫ 2π

0

dφ exp(i(M −M ′)φ)
∫ π

0

dθ sin θf(θ, φ)

×
∑

k=±1

(k)L+L′dL
kM (θ)dL′

kM ′(θ), (18)

with f(θ, φ) ≥ 0 and 1
4π

∫ 2π

0
dφ

∫ π

0
dθ sin θf(θ, φ) = 1.

The symbol dL
kM (θ) stands for the matrix element of

the generalized spherical harmonic, while the function
f(θ, φ) describes distribution of the magnetization axes
with respect to the incoming beam. The element g111

11

satisfies the following condition g111
11 > 1

2
. For foils mag-

netized perpendicular to the beam one has g111
11 < 1. For

isotropic distribution f(θ, φ) one has g111
11 = 1.

In principle all lines should have the same width in a
transmission mode. However high precision transmission
data exhibit usually slightly broader external lines (1, 6)
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in comparison with the pair (2, 5), and the latter pair
is often slightly broader than the innermost pair (3, 4).
This effect is due to the finite primary beam divergence.
There is no observable difference between lines belonging
to the same pair as the total shift of the spectrum is small
compared to the splitting for available sources. Here the
effect of the beam divergence is present as well. One
can expect as well significant line broadening due to the
fact that the final decay via emission of the conversion
electron occurs from delocalized excited nuclear state due
to the partly coherent nature of the excitation. Hence,
the line widths could vary from one to another line.

One has to note that absorption due to one of the out-
ermost lines does not lead to the incoherent secondary
field upon subsequent decay with the emission of the re-
coilless photon. On the other hand, absorption due to
either second or fifth line generates 1/3 incoherent con-
tribution to the secondary field. For innermost lines this
contribution amounts to 2/3. The angular distribution of
the secondary field is different, while emitting lines (2, 5)
in comparison with emission of the remaining lines. The
overall intensity of the nuclear secondary field does not
depend on the particular excitation transition.

Fig. 1. Schematic representation of the absorption line
pattern in metallic iron.

Hence, one can expect some further corrections to the
line intensities due to the secondary field. Unfortunately,
any corrections to the pair (2, 5) are masked by the much
stronger effect of the partial magnetization. However,
one can compare outermost pair with the innermost pair
introducing the following set of intensities 3g111

11 (1− χ) :
2 : g111

11 : g111
11 : 2 : 3g111

11 (1 − χ), where the parameter χ
is adjustable.

4. Experimental results and data evaluation

A commercial resonantly thin and single Lorentzian
line (with negligible polarization) 57Co(Rh) — 14.41 keV
source was used at room temperature under negligible
pressure and without any external magnetic field. A tar-
get was made of thick polycrystalline α-Fe foil enriched
to 96 at.% in 57Fe and kept under the same thermody-
namic conditions as the source. The low background gas
flow CEMS detector was used in the back scattering ge-
ometry. A gas mixture was composed of helium with
addition of 10 vol.% CH4. The gas pressure was kept

slightly above ambient pressure. Such detector has prac-
tically no energy resolution, hence it works in the inte-
gral CEMS mode, i.e., in the ICEMS mode. The lower
threshold level was set in such way to remove detector
noise, while the higher level threshold was set to dis-
criminate against rare high-energy events. The spectrum
was recorded in the round-corner triangular mode of the
MsAa-3 spectrometer with the source being moved [28].
A dwell time for the raw data channel has been chosen
as about 42.7 µs, while the number of raw data channels
was selected as 4096. The folded and calibrated spectrum
is shown in Fig. 2.

Fig. 2. Spectrum of the iron foil. Superimposed curve
is obtained by fitting data within the final model (c).
Iron lines are numbered in accordance with Fig. 1.

One can see slight oxidation of the iron foil surface as
an additional broad feature close to the spectrum cen-
ter. This imperfection was accounted for adding extra
symmetric doublet composed of Lorentzian lines in each
fit and described by four variables: two positions on the
velocity scale, intensity and width. Such doublets are
typical for iron foils exposed to the air and they are seen
in the transmission spectra as well. The oxidation is only
partial, and hence oxidized layer is highly disordered.
Usually, it is composed of some iron hydroxides. The
fitting procedure is based on Eqs. (16) and (17).

Data were fitted firstly within the thin target approx-
imation and by using Lorentzian line-shapes model (a).
The source line width was fixed to the natural line width
Γs = 0.097 mm/s and this parameter was kept constant
at the above value in all subsequent fits as well. Param-
eters {δκ, ϕκ, ψκ} were set to zero in this model together
with the parameter β. Remaining parameters were al-
lowed to vary. Namely, the background, spectrum am-
plitude, magnetic coupling constants in the ground and
excited state, total shift, line widths, g111

11 and χ were
allowed to vary. Oxide parameters were found in the
separate run.

The second model (b) was extended in comparison with
the model (a) allowing for additional variation of param-
eters {δκ, ϕκ, ψκ}. Oxide parameters were kept constant
on the previously determined values. Finally, the sen-
sitivity of the spectrum to the variation of the parame-
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Fig. 3. Differential plots of residua for subsequent fit-
ting models (a), (b), and (c) are shown versus velocity.

ter β was investigated extending previous model (b) into
final model (c). Oxide parameters were kept constant as
above, and they were relaxed upon having received de-
cent values of the remaining parameters. They were fixed
in the final run on the corrected values. Figure 3 shows
differential plots for final runs of above models.

It is clear that model (a) is unable to account for quite
significant dispersion (interference) terms due to the sec-
ondary field. A transition to the model (b) accounts for
the most of the line distortion due to the secondary field.
Subsequent introduction of the target thickness in the
model (c) has only minor effect as the cross-section for
the low energy electrons scattering is extremely large in
metallic iron. Some small deviations remain even within
model (c) due to the unaccounted for higher than sec-
ondary fields and due to the histogram effect present
even for the large number of data channels used (2047
for the folded spectrum). One can see some high order
base line curvature as well, as the base line was treated
within the single parameter approximation, as the major
contributions to the curvature are removed by the folding
procedure.

Figure 4 shows differential plots on the expanded ve-
locity scale around strong line (2) for models (a) and (c)
— final runs. A similar plot for completely “coherent”
line (1) is shown in Fig. 5.

Fig. 4. Differential plots on the expanded velocity
scale around strong line (2) for models (a) and (c).

Fig. 5. Differential plots on the expanded velocity
scale around completely “coherent” line (1) for models
(a) and (c).
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Fig. 6. Normalized differential plot for model (c). The
symbol ∆Pexp stands for the statistical error in each
channel.

Complex dispersion term is clearly visible as the
residuum of the model (a). This pattern is likely to
vary for single crystal, while changing direction of the
primary beam within the main crystal axes. Finally, the
Table summarizes essential final parameters of the sec-
ondary field obtained within model (c). These parame-
ters are to be treated as example as they can vary with
the orientation of crystallites and overall target magne-
tization. It has to be noted that target line widths are
quite broad beyond the geometrical (beam divergence)
effect (see Table). It is strong indication for presence
of the coherent excited nuclear state. Such state decays
much faster than isolated nuclear state as it has more de-
cay channels opened. Hence, it leads to the broadening
of the line. Such state involves coherent recoilless radia-
tion coupling various nuclei, and hence it depends on the
degree of coherence during decay to the ground state.
Thus external lines are broader than other lines, as they
do not experience spin incoherence (see, Fig. 1) — they
lead solely to the original ground hyperfine states. One
has to realize that secondary radiation fields have much
larger range than conversion electrons within target.

TABLE
Final parameters of the secondary field

Line (κ) δκ ϕκ ψκ Γκ[mm/s]

1 2.53(6) 0.39(2) −0.027(2) 0.246(1)
2 1.62(4) 0.16(2) −0.007(1) 0.185(1)
3 1.57(10) −0.45(5) 0.050(5) 0.178(2)
4 2.01(14) 0.49(4) −0.090(6) 0.179(2)
5 1.61(4) −0.11(2) −0.005(1) 0.181(1)
6 2.35(6) −0.51(2) 0.042(2) 0.239(1)

Parameters describing secondary field effects obtained
within model (c) — final run. Line widths have been
included as they are broadened due to the existence of
the coherent excited nuclear state. The parameter χ has

been obtained within model (c) as χ = −0.060(9), while
the parameter g111

11 has been obtained within the same
model as 0.548(4).

Further development of the models is unjustified as one
obtains χ2/d.f. = 0.94 and MISFIT = 0.0022(8)% [29] in
the case of model (c) — final run. The normalized differ-
ential plot for this model is shown in Fig. 6. Remaining
structure does not justify further expansion of the model.

5. Conclusions

The secondary field modifies line shape, while the co-
herent part of this field leads to the modification of the
line shape and to the broadening of lines as the coherent
excited nuclear state is formed. The line shape is dis-
torted by the interference terms (dispersion terms) due
to the presence of the coherent secondary field generated
by the elastic Rayleigh scattering of the primary radi-
ation. Generally departures from the Lorentzian shape
are small, however they are observable thanks to the very
large signal to noise ratio for strongly enriched target.
The thickness effect is small even for this strongly en-
riched target, as all conversion electrons have very small
range in the metallic iron for this particular resonant
nuclear transition. Above effects are practically unde-
tectable for targets with natural isotopic composition of
iron or only partly enriched. One has to note that a lot
of coherence (dispersion terms) in the secondary field is
lost for natural isotopic abundance of iron due to the
isotopic incoherence, as resonant atoms are distributed
almost randomly on the accessible iron sites.
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