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We present first principles calculations of the structural and electronic properties of zinc blende BN, InN and
their ternary alloy BxIn1−xN for concentrations x = 0.25, 0.5, 0.75. The computational method used is based on
the full potential linearized augmented plane wave. The exchange and correlation energy is described in the local
density approximation and generalized gradient approximation. We have studied the structural and electronic
properties. First, the lattice constants a0, bulk modulus B, pressure derivative B′ for zinc blende BN, InN, and
BxIn1−xN solid solutions were carried out. Thereafter, the band gap energies and the densities of states of binary
compounds and the ternary alloy BxIn1−xN were investigated. Results obtained and compared with available
experimental and theoretical values show a reasonable agreement.

PACS numbers: 61.50.ks, 64.70.Rb, 71.15.Mb

1. Introduction

III–V and II–IV semiconductors are the most studied
today and constitute the basic building blocks of emit-
ters and receivers in optoelectronic devices. Group-III
nitrides are nowadays widely used in the industry. With
respect to classical III–V semiconductors, the group-III
nitrides semiconductors have attracted much attention in
recent years due to their great potential for optoelectronic
applications [1]. In this study, first principles total energy
calculations were carried out to investigate structural and
electronic properties of ternary alloys BxIn1−xN, binary
compounds BN and InN.

On the theoretical side, the binary BN, AlN, GaN,
InN [2–4] and their solid solutions BGaN, BAlN, AlInN
[4, 5] were carried out using different methods in
the calculation of the band structure of these alloys.
These include methods based on the dielectric two-band
model [6], semi-empirical tight-binding method [7, 8]
semi-empirical pseudo-potential method [9, 10], ab ini-
tio pseudo-potential method [11–22] and full potential
linearized augmented plane wave (FP-LAPW) method
[23, 24]. To our knowledge, there is no theoretical in-
vestigation of BxIn1−xN alloy. To understand the struc-
tural and electronic properties of these ternary alloys,
we carry out the present study, in which we have used
the first principles FP-LAPW method within the local
density approximation (LDA) and generalized gradient
approximation (GGA) scheme [25–27].

2. Calculation method

In this work we used the scalar nonrelativistic full po-
tential linearized augmented plane wave plus local orbital
(FP-L/APW+LO) [28] approach based on the density
functional theory [29] within the LDA and GGA using
the scheme of Perdew et al. [30]. The exchange correla-
tion energy was parameterized by Perdew and Wang [31].

In the present calculations we apply the most recent
version of Vienna package WIEN2k [32, 33]. In this new
version, the alternative base sets (APW+LO) are used
inside the atomic spheres for those chemically impor-
tant l-orbital (partial waves) that converge with difficulty
(outermost valence p, d, or f -states), or for atoms where
small atomic spheres must be used [34, 35]. For all the
other partial waves, the LAPW scheme is used.

Moreover, we used the semi-relativistic approximation
(no spin–orbit effects included) whereas the core levels
are treated fully nonrelativistically [36]. In particular,
the indium is considered to include explicitly the semi-
core d electrons in the valence bands. In the following
calculations, we distinguish the B (1s2), In (1s2 2s2 2p6

3s2 3p6 3d10 4s2 4p6), and N (1s2) inner-shell electrons
from the valence electrons of B (2s2 2p1), In (4d10 5s2

5p1) and N (2s2 2p3) shells.
The core states are self-consistently relaxed in a spher-

ical approximation. Inside the non-overlapping spheres
of muffin-tin (MT) radius RMT (bohr) around each atom,
spherical harmonic expansion is used. We chose the plane
wave basis set for the remaining space of the unit cell. For
BN and InN we adopted as the MT radius, the values of
1.5, 2.4, and 1.4 for B, In, and N, respectively. The max-
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imum l value for the wave function expansion inside the
atomic spheres was confined to lmax = 10. In order to
achieve energy eigenvalues convergence, the wave func-
tions in the interstitial region are expanded into plane
waves with a cutoff of RMTkMAX = 7 (where kMAX is the
maximum reciprocal lattice vector, and RMT is the aver-
age radius of the MT spheres). The k integration over the
Brillouin zone is performed using Monkhorst and Pack
[37] mesh, yielding to 27k points in the irreducible wedge
of the Brillouin zone for both zinc blende structures. In
ternary semiconductor alloys, the optical bowing is a well
known phenomenon. This bowing in large band gap of
III–V semiconductor has been observed more than thirty
years ago by Larach et al. [38] on powder material and
by Ebina et al. [39].

The k integration over Brillouin zone is performed us-
ing tetrahedron method [40].

3. Results and discussions

3.1. Structural properties

The structural properties of the binary compounds BN
and InN in the zinc-blende structure were carried out us-

ing the FP-LAPW method. We have chosen the basic
cubic cell as the unit cell. For the considered structures,
zinc blende (ZB) BN and InN, we performed the struc-
tural optimization by calculating the total energies for
different volumes around the equilibrium cell volume V0

of the binary BN and InN compounds and their alloys.
The calculated total energies are fitted to the Murnaghan
equation of state to determine the ground state proper-
ties as the equilibrium lattice constant a0, the bulk mod-
ulus B0 and its pressure derivative B′. The calculated
equilibrium parameters (a0, B, and B′) and other avail-
able experimental and calculated values are summarized
in Table I. A good agreement is found. Also, there is
a small underestimation of the lattice parameters and
overestimations of the bulk modulus compared to the ex-
perimental data; this is due essentially to the use of the
LDA and GGA. Furthermore, the values of the calculated
bulk modulus (in LDA) approximation decrease from BN
to InN, i.e. from the lower to the higher atomic number.
This suggests that BN is less compressible than InN.

TABLE I
Lattice constants a, bulk modulus B, and pressure derivative B′ for ZB InN, BN and BxIn1−xN solid
solutions.

Composition
This work Other theoretical Experimental data

LDA GGA studies

a [Å] 4.98 5.08 5.04–4.94a 4.98h

InN B [GPa] 155.35 127.71 133–146a 137i

B′ [GPa] 4.49 3.40 3.36–4.48a

a [Å] 4.83 4.91
B0.25In0.75N B [GPa] 173.85 153.00

B′ [GPa] 3.65 3.91
a [Å] 4.56 4.61

B0.5In0.5N B [GPa] 199.56 182.86
B′ [GPa] 3.51 3.55

a [Å] 4.21 4.26
B0.75In0.25N B [GPa] 403.86 257.98

B′ [GPa] 3.42 3.48
a [Å] 3.58 3.63 3.60, 3.57b, 3.57–3.64c 3.61d

BN B [GPa] 408.89 395.74 367, 386b, 397–366c 369e

B′ [GPa] 3.65 2.94 3.94f , 3.6, 2.91–3.97g 4.1f , 3.0–4.0g

aRef. [49]; bRef. [14–16]; cRef. [20, 21]; dRef. [17, 18]; eRef. [17]; fRef. [13]; gRef. [20–22]; hRef. [54]; iRef. [55]

Usually, in the treatment of alloys, it is assumed that
the atoms are located at the ideal lattice sites and the
lattice constant varies linearly with composition x ac-

cording to the so-called Vegard law [41]:
a(AxB1−xC) = xaAC + (1− x)aBC , (1)

where aAC, aBC are the equilibrium lattice constants of
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the binary compounds AC and BC, respectively, and
a(AxB1−xC) is the alloy lattice constant. However, viola-
tion of Vegard’s law has been observed in semiconductor
alloys both experimentally [42] and theoretically [43, 44].
Hence, the lattice constant can be written as

a(AxB1−xC) = xaAC + (1− x)aBC − x(1− x)b , (2)
where the quadratic term b is the bowing parameter.

Figures 1 and 2 show the variation of the calculated
equilibrium lattice constants and the bulk modulus ver-
sus concentration xB for BxIn1−xN alloy, respectively. It
is very clear from Fig. 2 that the value of the bulk modu-
lus increase with increasing xB concentration. To analyze
the degree of deviation from the Vegard law, the lattice
constant of BxIn1−xN solid solutions as a function of the
boron composition x can be approximated using the for-
mula (2):

a(x) = xaBN + (1− x)aInN − x(1− x)b . (3)
With the best fit of results shown in Fig. 1, using Eq. (3)
we found the deviation parameter of the lattice constant
b = −1.1. This result can be explained by the use of
LDA and GGA approximations to simulate the ternary
BxIn1−xN within an ordered supercell. It is clearly
known that both LDA and GGA underestimate physical
parameters. We note that solid solution assuming dis-
order can be better carried out using coherent potential
approximation (CPA) [45].

Fig. 1. Lattice constant of BxIn1−xN alloys.

Fig. 2. Bulk modulus of BxIn1−xN alloys.

3.2. Electronic properties

Figures 3 and 4 show the calculated band structure
energies of binary compounds BN and InN. We have ob-

Fig. 3. Band structure of ZB BN.

Fig. 4. Band structure of ZB InN.

tained an indirect band gap for the BN with a value of
8.67 eV and a direct band gap for the InN with a value
of 0.0 eV. The band gap calculated for the ZB InN us-
ing the LDA or GGA approximations describes InN as
metallic compound. Using the exchange potential of En-
gel and Vosko [46] a semiconductor phase is found for
both crystal structures, although the band gap is un-
derestimated. The band gap has been improved accord-
ing to a quasi-particle correction. However, it has been
shown by Del Sole and Girlanda [47] that the LDA com-
bined with the scissors-operator approximation describes
the optical spectrum rather well. The correct value for
the InN band gap can be calculated by using the quasi-
-particle method proposed by Bechstedt and Sole [48].
This model for the correction is based on the difference in
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Fig. 5. The band structure of ZB ternary alloy
BxIn1−xN: (a) x = 0.25, (b) x = 0.5, (c) x = 0.75.

self-energies obtained from the LDA and the GW approx-
imation. Focusing now on the BxIn1−xN solid solutions,
our calculations give direct band gaps with different com-
positions x (x = 0.25, 0.5, 0.75). The results are reported
in Fig. 5 a–c. The main band gaps are given in Table II,
as well as the available theoretical and experimental val-
ues.

It is clearly seen that the band gaps are on the whole
underestimated in comparison with experimental results.
This underestimation of the band gaps is mainly due
to the fact that the simple form of GGA does not take
into account the quasiparticle self-energy correctly which
make it not sufficiently flexible to accurately reproduce

both exchange correlation energy and its charge deriva-
tive. It is important to note that the density functional
formalism is limited in its validity and the band structure
derived from it cannot be used directly for comparison
with experiment.

Fig. 6. Composition dependence of the direct (Γ–Γ )
and indirect (Γ–X) band gaps in BxIn1−xN alloys.

The variation of the direct EΓ–Γ and indirect EΓ–X

band gaps versus alloy composition is given in Fig. 6.
A crossover between the direct and indirect band gaps
is located at a concentration of 0.719. We note that the
fundamental gap EΓ–Γ increases considerably with the
boron composition, but only a small increase is seen for
the indirect gap EΓ–X . The bowing parameter is calcu-
lated by fitting the non-linear variation of the calculated
direct and indirect band gaps in terms of concentration
with polynomial function. The results are shown in Fig. 6
and obey the following variations:

EΓ–Γ = 0.287− 6.73x + 14.75x2, (4)

EΓ–X = 2.899− 1.55x + 2.899x2. (5)
It is shown from the above equations that variation of
direct EΓ–Γ and indirect EΓ–X band gaps as a function
of concentration has a non-linear behavior. The direct
gap EΓ–Γ versus concentration has a large bowing with
a value of b = 14.75, while the indirect gap EΓ–X has
a bowing of b = 2.899. The values of these bowings are
close to those obtained by using the FP-LAPW method.

TABLE II
Direct (Γ–Γ ) and indirect (Γ–X) band gaps for zinc blende InN, BN and their alloys BxIn1−xN.

Composition
This work GGA Other theoretical Experimental data
EΓ–Γ EΓ–X studies

InN 0.00 2.765 0.00a, 0.15d, 0.69g 2.11d, 1.9f

B0.25In0.75N 0.0208 2.597 – –
B0.5In0.5N 0.855 2.362 – –
B0.75In0.25N 2.716 3.582 – –

BN 8.677 3.955 9.09–4.24b, 8.79–4.45c 6e

aRef. [50]; bRef. [49]; cRef. [51]; dRef. [46]; eRef. [52]; fRef. [53]
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The shift between the lattice parameters of BN and
InN is larger than 20%. This can induce an important
disorder which affects the electronic and structural prop-
erties. The ternary BxIn1−xN shows a direct gap for
the compositions x = 0.25, 0.5, and 0.75. The boron
fraction modulates the gap energy: from 0.022 eV (for
x = 0.25 to 2.71 eV for x = 0.75). The band gap energy
increases considerably with high boron composition x.
The B0.75In0.25N is a wide gap semiconductor.

3.3. Density of states (DOS)
The essential ingredient in determining the electronic

properties of solids is the energy distribution of the va-
lence and band electrons. Theoretical quantities such as

Fig. 7. Total density of state of BN (a) and angular-
-momentum decomposition of the atom-project densi-
ties of states in c-BN (b)–(d).

Fig. 8. Total density of state of InN (a) and angular-
-momentum decomposition of the atom-project densi-
ties of states in c-InN (b)–(e).

total electronic energy of solid, the position of the Fermi
level and tunneling probabilities of electrons call for de-
tailed calculation of electronic density of states. Calcula-
tion of the DOS requires a very high degree of precision

Fig. 9. Total density of state of B0.75In0.25N (a) and
angular momentum decomposition of the atom-project
densities of states in c-B0.75In0.25N (b)–(e).

Fig. 10. Total valence charge densities in zinc blende
BN: (a) along (111) direction, (b) in the (110) plane.

with the use of a fine k-point mesh in the first Brillouin
zone (BZ). In our calculations we considered a k-mesh =
3000 for binary compounds BN and InN and a k-mesh =
60 for the B0.75In0.25N solid solution. For ZB InN and
BN the total DOS presents three regions: two valence
regions VB1, VB2 and one conduction band CB. Figures
7a and 8a show the partial and total DOS for the BN and
InN. For BN the lower VB2 valence band region is dom-
inated by N 2s states, and the upper VB1 valence band
by N 2p3 and B 2s. The conduction band results from
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Fig. 11. Total valence charge densities in zinc blende
InN: (a) along (111) direction, (b) in the (110) plane.

Fig. 12. Total valence charge densities in zinc blende
B0.75In0.25N along (110) plane.

the contribution of N 2p and B 2p. For the InN the VB2
is dominated by N 2s and In 3d states. The In 4s and
N 2p states contribute to the upper valence bands. The
first conduction band is predominantly of N 2p states.
The total DOS of B0.75In0.25N shown in Fig. 9a is es-
sential to study the nature of chemical bonding in this
material. In this case the total DOS presents three re-
gions, the first region is dominated by N 2s and In 4s,
the second region results from the contributions of N 2p,
B 2p and In 4p states. The In 3d states contribute in the
third region. The charge transfer from boron to nitro-
gen is due to the difference in electronegativity between
nitrogen and boron and explains the occurrence of the

first peak in B0.75 In0.25 N. Figures 10a, 11a show the
electronic densities for the ZB BN and InN in the (111)
direction. Figures 10b, 11b and 12 present the contour
plot for BN, InN and B0.75In0.25N in the plane (110).

4. Conclusion

We have used the FP-LAPW method within the LDA
and GGA approximations to investigate the structural
and electronic properties of the cubic BxIn1−xN alloy.
We have calculated the equilibrium lattice constants,
bulk modulus, and pressure derivatives. The bowings
of the lattice constant, bulk modulus and energy band
gap are also investigated. The BxIn1−xN for the compo-
sition x = 0.75 is a wide gap semiconductor and may be
a good material for optoelectronic industry. The results
show a strong dependence of the band gap bowing factor
on composition of boron x.
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