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The so-called Bayesian reasoning is applied whenever uncertainty has to be considered as serious factor in
interpretation of results. The paper presents analysis of the impact of inaccurate data on the straight line and
quadratic relation fittings. This type of analysis is particularly important when one tries to decide on the type of
dependence. The paper also shows examples of the Maximum Entropy Methods applied to the reconstruction of
the hyperfine parameters distribution from the measured Mössbauer spectra of GaFeO3 and the electron–positron
momentum distribution from the positron annihilation data of Gd.
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1. Introduction

Experimental data always bear uncertainties. The re-
searcher needs usually either to fit certain function to
the measured points or to reconstruct certain distri-
bution which is hidden in the experiment. This hap-
pens e.g. when one measures a spectrum which usu-
ally has smeared details due to the finite resolution of
the spectrometer. In the conventional analysis, least-
-square method is most commonly used. Description of
the method can be found in every academic textbooks on
data analysis. Moreover, method of curve fitting, is sus-
ceptible to ‘outliers’ — the points that accidentally are
having values significantly different from other measured
points. When such points appear in a single spectrum,
it is not particularly difficult to qualify them as outliers
and eventually neglect them in the analysis. Much more
difficult case is when one collects the data obtained in dif-
ferent laboratories or measured by different techniques.
When the scatter of points is substantially larger than
their claimed accuracies would allow, the parameters of
a curve fitted to the measured points may have very low
credibility. In the more difficult case of a reconstruction
of a distribution observed through a spectrum smeared by
resolution function of measuring instrument, one meets
in fact two problems: one is the most accurate decon-
volution of the spectrum, the other — carrying out non-
-parametric model-free reconstruction of the distribution.
This is typical inverse problem which is generally difficult
to solve. The Maximum Entropy Method is often very
useful in solving such problems. In both cases, excel-
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lent introduction to the Bayesian and Maximum Entropy
methods can be found in [1]. Their bases would only be
briefly described in the next sections where it would be
necessary.

2. “Outliers” and curve fitting

A good example of the problem was considered by For-
nalski and Dobrzyński [2] who analyzed the epidemiolog-
ical data obtained for the cancer deaths of the nuclear
industry workers. The scatter of points presented in orig-
inal papers [3], that were intended to show that the risk of
cancer death increases with the dose absorbed by work-
ers, by far exceeded declared experimental uncertainties.
These points exhibited also uneven distribution of points
along abscissa axis. In such situation one could imme-
diately say that conventional least-square fitting must
lead to the parameters of the fit that may not be reli-
able. It could be suspected that the conclusions reached
in papers [3] were due to a few “outliers” in the data. In
fact, in the data considered one cannot directly say which
points should be treated as outliers just because of the
scatter of the data. Therefore, instead of removing sus-
pected points, the authors of [2] used the method [1], of
carrying out the fit under assumption that the values of
uncertainties are declared for the points lowest estimate
of the true ones.

In accordance to [1], for given uncertainty σ0, one as-
sumes that this value is showing rather the lowest esti-
mate, and a probability density that the “true” uncer-
tainty σ is given by so-called Jeffrey’s prior:

p(σ) =
1

ln(σmax/σmin)
1
σ

, (2.1)

where σmin can be set to σ0, and σmax is chosen arbitrar-

(892)
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ily, or by simpler formula:

p(σ) =
σ0

σ2
, (2.2)

where σ lies in the limits [σ0,∞).
The Bayes theorem for conditional probability of an

event X given Y and some general information I, which
we could have about the studied object or distribution:

p (X|Y, I) =
p (Y |X, I) p (X| I)

p (Y | I)
, (2.3)

where the probability p(X|I) should be understood as
showing the state of knowledge (“degree-of-belief”) about
X in light of the information I. The expression in the
nominator is a product of likelihood function (how well
the data Y reflect correctness of hypothesis X) and the
prior (what do we know about X expressed in terms of
a probability value between 0 and 1). The former can be
calculated within usual theory of likelihood.

For the case we are interested in, the conditional prob-
ability density of having experimental datum E, given its
uncertainty σ and expected theoretical value T , is given
by:

P (E|σ) =
1√
2πσ

exp
[−(T − E)2/(2σ2)

]
p(σ) , (2.4)

where the information I was dropped for better clarity
of the formula. The probability (for all N experimental
points) should be maximized for a number of parameters
{αn, n = 1, 2, . . . ,M} of expected function (T ), which
describes the data. In order to find the maximum of:

P =
N∏

i=1

Pi =
N∏

i=1

∫
1√

2πσi

× exp
(−(Ti − Ei)2/(2σ2

i )
)
p(σi)dσi , (2.5)

it is convenient to maximize the logarithm L =∑N
i=1 ln Pi with respect to any of the of parameter fit αn:

dL

dαn
=

N∑

i=1

−(Ti − Ei)
dTi

dαn

1
Pi

×
∫

1√
2πσ3

i

exp
(−(Ti−Ei)2/(2σ2

i )
)
p(σi)dσi ,(2.6)

which can be written in shorter form:
dL

dαn
=

N∑

i=1

gi

(
Ti − Ei

) dTi

dαn
, (2.7)

where N is the number of all analyzed data points, and
the derivative (2.7) should thus be set to zero. The in-
tegral’s range in (2.5) and (2.6) for the prior (2.1) is
[σmin, σmax] and for (2.2) — [σ0,∞). For example, with
the prior (2.2), after integrating (2.4) in the above lim-
its, the following expression is obtained for the probabil-
ity Pi:

Pi =
σ0i

(Ti − Ei)2
√

2π

×
[
1− exp

(− (Ti − Ei)2/(2σ2
0i)

)]
. (2.8)

The set of as many equations of the form (2.7) as the
number M of parameters αn has to be solved numerically.

From purely technical point of view, this corresponds to
changing the weights 1/σ2

ι of any i-th point in classical
least-square routine to a new value gi:

gi =
1

(Ti − Ei)2

×
(

2− (Ti − Ei)2

σ2
0i

1
exp

(
(Ti − Ei)2/2σ2

0i

)− 1

)
.(2.9)

Let’s note that the weights gi contain the parameters of
interest which appear in theoretical functions Ti.

In the case of straight line fitting one deals with n = 2
parameters, so Ti = aDi+b, where Di denotes the exper-
imental datum. This problem was considered in the text-
book by Sivia and Skilling [1]. It was shown there that
a few ‘outliers’ are effectively not influencing parameters
of searched dependence while direct least-square fitting
results in producing serious errors of these parameters.
It was shown in the paper [2], that such a comfortable
situation is encountered only when the number of “out-
liers” is not too large and not deviating from the proper
line (trend) in one direction only as may happen e.g. in
measurements of low count rates.

Fig. 1. Four examples of classical χ2 fitting (dotted
lines) and the Bayesian one (solid lines). All points
are simulated. The main trend was assumed to be
y = 0.6x + 4.76.

An example of the straight line fitting is shown in
Fig. 1. In four parts of the figure one can see simulated
experimental points scattered around assumed original
trend yi = 0.6xi + 4.76, plus a number of points that
intentionally deviate markedly from the assumed trend.
While the dotted lines present results of the classical
least-squares fitting, the solid lines are obtained by means
of the Bayesian approach. To show the quality of agree-
ment with the original trend, it is convenient to calculate
the value of the following parameter SA:
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SA =
n∑

i=1

∣∣yd,i − yt,i

∣∣ , (2.10)

where yd,i denotes the value of the i-th point which follow

from the parameters of the fit, and yt,i its “ideal” value
(here yt,i = 0.6xi +4.76). It is obvious that better recon-
struction of the trend must have lower parameter SA.

TABLE I
Fitted parameters and parameters SA for both cases presented in Figs. 1 and 2.
The least squares (χ2) and Bayesian methods were used.

Case
Linear (Fig. 1) Quadratic (Fig. 2)

χ2 method Bayes χ2 method Bayes

f(x)
a = 0.29± 0.11

b = 9.94± 1.2

SA = 42.6

a = 0.59± 0.07

b = 5.04± 1.1

SA = 4.1

a = 0.17± 0.05

b = −1.79± 0.62

c = 14.77± 1.6

SA = 28.5

a = 0.19± 0.03

b = −2.19± 0.52

c = 15.21± 1.3

SA = 10.7

g(x)
a = 0.39± 0.15

b = 12.11± 1.7

SA = 103.1

a = 0.58± 0.12

b = 4.73± 1.2

SA = 4.0

a = 0.14± 0.02

b = −1.06± 0.13

c = 12.66± 2.1

SA = 57.1

a = 0.16± 0.01

b = −1.44± 0.09

c = 10.87± 1.4

SA = 20.2

h(x)
a = 0.48± 0.15

b = 11.57± 1.7

SA = 111.6

a = 0.35± 0.15

b = 18.68± 1.4

SA = 225.9

a = 0.07± 0.02

b = −0.18± 0.34

c = 13.24± 1.3

SA = 89.6

a = 0.05± 0.02

b = 0.66± 0.27

c = 10.60± 1.1

SA = 124.2

j(x)
a = 0.36± 0.2

b = 9.62± 2.4

SA = 47.2

a = 0.58± 0.14

b = 4.47± 1.4

SA = 9.2

a = 0.12± 0.01

b = −1.12± 0.24

c = 14.74± 1.7

SA = 56.3

a = 0.16± 0.01

b = −1.52± 0.14

c = 10.75± 0.96

SA = 23.9

The first function (see Fig. 1) f(x) shows the results
of fitting when only three apparent outliers are present.
It is a common example of typical experimental event
with some outliers. In such a case it would be justified
to reject those three points and concentrate on remain-
ing points only. It is shown that the Bayesian approach
needs not make such rejection in order to arrive at proper
result, what is in good agreement with the results pre-
sented in [1]. The g(x) and remaining functions contain
much more outliers (such data could come e.g. from dif-
ferent laboratories). It is seen that in the first two cases
the Bayesian approach results in the fitted line which is
very close to the “true” one. In the third example h(x)
the number of points which are away from the expected
trend is larger than the number of “correct” points. In
this particular case one can hardly differentiate between
“correct” points and “outliers”. This is also seen in the re-
sult of the Bayesian analysis, see parameter SA in Table I,
which favors “outliers”. However, one can also see that in
such case the parameters SA obtained within the maxi-
mum likelihood approach and the Bayesian one are not
as different as in the other cases. In the last case j(x)
although the number of “outliers” is high, they lie below
and above the trend. One can see, that from many op-
tions of drawing single line, the Bayesian analysis selects

the points that most likely lie on a straight line or are
closest to such line. The last three cases are very seldom
in practice. In fact, such data with large scatter appear
in reality. The authors met such situation when they
analyzed epidemiological data on the cancer mortality
among nuclear workers [2].

In order to be sure of the usefulness of presented
Bayesian reasoning, one should check how such a pro-
cedure works in case of more complicated fitted function,
e.g. quadratic one as the next simplest case. In this case
it is necessary to take three fitting parameters, so the
function factor is T = aD2 + bD + c. The results of fit
are shown in Fig. 2, where the original trend was put as
y = 0.19x2 − 2.24x + 15.2. Again, two types of analyses
(least-squares — the dotted lines, and Bayesian one —
solid lines) are applied to the simulated data. All four
cases, f(x), g(x), h(x) and j(x) are intentionally very
similar to the previous linear case. The general results
indicate again advantages of the Bayesian approach. All
the results are summarized in Table I.

The Bayesian analysis can be used in many more situ-
ations. For example, one can assess relative reliability of
two alternative models of fitted functions, e.g. one which
assumes a linear dependence (e.g. voltage vs. electric cur-
rent), and the other one which assumes quadratic or more
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Fig. 2. Four examples of classical χ2 fitting (dotted
lines) and the Bayesian one (solid lines). All points are
simulated ones. They should reflect quadratic function
y = 0.19x2 − 2.24x + 15.2.

complicated dependences. Generally speaking, it is nec-
essary to find the posterior (confidence) ratio for both
models and multiply it by so called “Ockham’s factor”,
which prevent using of over-complicated model. As it was
shown in [1] and [2], if one model A has no parameter to
fit, while a model B contains one parameter λ than their
relative value can be calculated as follows. If λ turned
out to appear with the uncertainty δλ, while prior to the
fitting we knew only that it must be contained within the
(λmin, λmax) limits, the relative superiority of one model
A with respect to B is:

Wm =
P (A|D, I)
P (B|D, I)

=
P (A|I)
P (B|I)

P (D|A, I)
P (D|λ0, B, I)

× λmax − λmin

δλ
√

2π
, (2.11)

where the first term describes our evaluation of the rel-
ative importance of the models before doing the experi-
ment, the second term is a ratio of likelihood functions,
and the last term describes the “Ockham’s factor”.

3. Maximum Entropy Method: application to
the results of Mössbauer spectroscopy and 2D
Angular Correlation of Annihilation Radiation

(ACAR)

The Maximum Entropy Method is used to construct
the prior in the form of exp(αS), where α is a parame-
ter, and S is information entropy which is used often in
the form of cross-entropy, i.e.:

S = −
∑

i

pi log(pi/mi) , (3.1)

where pi and mi describe searched and prior distribu-
tions, respectively. In the simplest case one can use un-

informative (uniform) prior, i.e. mi = constant. This,
however, is known to cause some unwanted features as it
is presented e.g. in the case of charge-, spin- or electron
momentum-density distributions in solids [4].

The Mössbauer spectrum is described by many hy-
perfine parameters (magnetic hyperfine field B, isomer
shift (IS), quadrupole splitting (QS)) that can have their
own distributions. In addition, the relative intensities of
spectroscopic lines may be determined by possible sam-
ple texture and sample thickness effects. When these
last two effects are neglected one can use so-called thin-
-absorber approximation. In the simplest case one gets
six Lorentzian lines in the measured spectra appearing
at the source velocities:

v1 = B∗(3g3/2 − g1/2)/2 + QS + IS ,

v2 = B∗(g3/2 − g1/2)/2−QS + IS ,

v3 = B∗(−g3/2 − g1/2)/2−QS + IS ,

v4 = B∗(g3/2 + g1/2)/2−QS + IS ,

v5 = B∗(−g3/2+g1/2)/2−QS + IS ,

v6 = B∗(−3g3/2 + g1/2)/2 + QS + IS , (3.2)
where the gyromagnetic factors for 57Fe nucleus
are: g3/2 = −0.067897 mm/s/T, and g1/2 =
0.118821 mm/s/T. The intensities of the lines are shown
in Table II.

TABLE II
Line intensities in Zeeman sextets in the case of unpolarized
as well as circularly polarized photons.

Line number Unpolarized radiation∗ Circularly polarized
radiation∗

1 I1 = 3(1 + c2)/16 I1 = 3(1 + c2 + 2c1)/16

2 I2 = (1− c2)/4 I2 = (1− c2)/4

3 I3 = (1 + c2)/16 = I1/3 I3 = (1 + c2 − 2c1)/16

4 I4 = I3 I4 = I1/3

5 I5 = I2 I5 = I2

6 I6 = I1 I6 = 3I3

∗ — where c1 = 〈cosΘ〉 and c2 = 〈cos2 Θ〉 with Θ being an
angle between the direction of a photon and direction of the
magnetization of the sample (the averaging runs over all possible
grains and domains in the sample [5]).

A given i-th line contributes to the j-th channel in the
velocity spectrum the intensity proportional to:

Jj =
Ii

(V (j)− vi)2 + (Γ/2)2
, (3.3)

where Γ denotes the natural width of the line from Möss-
bauer source. When the hyperfine parameters B, IS and
QS have distributions described by a probability density
P(B, IS,QS) the Eq. (3.3) modifies to:

Jj =
∫ ∫ ∫

P (B, IS, QS)

× Ii(
V (j)− vi

)2 + (Γ/2)2
dB dIS dQS , (3.4)
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where the range of integrals may always be reasonably
chosen. In practice, the integral (3.4) is changed to a
sum: the whole 3D space is divided into pixels and one is
carrying out summation over the pixels seeking for values
of Pi, where i denotes a linear parameter of a pixel. From
the form of (3.4) it is seen that such a reconstruction is
formidable task.

The measured spectra are usually composed of 256
points only, so any kind of least square method can be
successfully applied only when the number of pixels is
very low, and when one deals with the one dimensional
distribution or one can assume certain dependencies be-
tween the hyperfine parameters, e.g. that the field B
linearly depends on isomer shift and quadrupole split-
ting. In this situation Maximum Entropy Method is the
method of choice. The Maximum Entropy Method can
be effectively used for reconstruction of the hyperfine
parameters distribution from the Mössbauer spectrum.
This was shown in Refs. [6–8] on mimicked spectra. The
MEM analysis of experimental case of the experimental
spectrum measured for amorphous Fe-B alloy was first
presented in the paper [9]. On the example of recently
obtained data for GaFeO3 it is shown in the present paper
that three dimensional MEM analysis of the probability
distributions of hyperfine parameters can be carried out
and the results are shown in Figs. 3–6. The spectrum
itself [10] exhibits quite broadened lines. The broaden-
ing can be due to the overlapping spectra arising from
different lattice sites and possible different environment
of the sites. This broadening does not allow to determine
uniquely hyperfine field parameters that can character-
ize each of the sites occupied by iron. The reconstruc-
tion by MEM (see Figs. 3–6) shows how much the real
distribution is collapsed when one wants to get infor-
mation about hyperfine magnetic field (B), isomer shifts
(IS), and quadrupole splitting (QS) connected with given
crystallographic site. Nevertheless, knowing that MEM
produces as much diffuse maps as possible. Obtained
reconstruction gives certain limits for hyperfine field val-
ues and may still be used as a starting point to the de-
scription of the measured spectra as a sum of spectra
connected with given crystallographic sites. In this case,
however, it is not possible to avoid a number of assump-
tions that may turn out to be invalid. The distributions
obtained by MEM are directly making full use of the ex-
perimental data and show what we really know without
making reference to any model.

It can be noticed that in spite of certain noise present
in the figures (that appears mainly at the borders of
the analyzed region of hyperfine parameters), they im-
ply that one can hardly speak about linear dependencies
between hyperfine parameters. Such correlations are typ-
ically assumed in the conventional analysis of the Möss-
bauer spectra with hyperfine fields distributions. The
distributions show that the spectra are most generally
interpreted in terms of the hyperfine parameters distri-
butions that can be correlated, but the way they are cor-
related is not described by a simple linear function. The

Fig. 3. The distribution of probabilities of hyperfine
parameters in GaFeO3 in B-IS plane from the measure-
ments at 14 K as obtained by MEM. P(B, IS) denotes
the probability distribution obtained as a sum of the
distributions for all quadrupole splittings.

Fig. 4. Similar in B-QS plane at 14 K. The distribution
is a sum of the distributions for all IS.

spectrum itself can also be analyzed by fitting four or five
individual spectra to the measured spectrum, but, as it
follows from the figures, the parameters fitted in this way
can be put to doubts. However, if one wishes to do that,
the MEM results offer at least the limits of the fit pa-

Fig. 5. Reconstruction (by MEM) of the distribution
at T = 14 K in B-IS plane shown in the 2D contour
plot.
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Fig. 6. Reconstruction (by MEM) of the distribution
at T = 100 K in B-IS plane.

rameters. In the particular case of GaFeO3 the spectrum
quite rapidly broadens with increase of the temperature.
The differences of the P(B, IS) distributions at T = 14 K
and T = 100 K are shown in 2D contour plots in the next
two figures. Apparent broadening of the spectra at high
temperature is clearly seen.

Another novel example of application of MEM to re-
construction of the electron–positron momentum distri-
bution is given below. In the experiment are injected
positrons into the material of interest. The positrons are
thermalized in the matter and could annihilate with elec-
trons producing two annihilation quanta. If the positron-
-electron pair had zero momentum, the quanta would be
emitted at 180◦ with respect to each other. Because there
is always certain momentum distribution ρ(p) of such
pair, one observes distribution of angles through which
the annihilation quanta appear. The 2D ACAR data are
described by:

N(px, py) =
∫

ρ(p)dpz , (3.5)

where p is momentum of annihilating positron-electron
pair. The data are measured for various values of pz along
many directions in (px, py)-plane. Therefore, one can re-
construct the momentum distribution ρ(px, py; pz) in the
plane perpendicular to pz. The MEM analysis was car-
ried out on the data for Gd, measured by R.L. Waspe and
R.N. West [11], and deconvoluted (also by MEM [12]) by
Fretwell et al. [13].

Maximization of entropy should be carried out under
certain constraints Φk(ρ), which, added to Eq. (3.5), re-
sult in Lagrangian:

L = −
∑

i

ρi log
(
ρi/ρ0

i

)−
∑

k

λkΦk(ρ) , (3.6)

where k runs over the number of constraints and λk

are Lagrange multipliers. The reconstructed density
must also be normalized to certain value A, so Φ0(ρ) =∑

i ρi − A. The constraints may be chosen so to ensure

that every experimental value Ek differs from the recon-
structed one:

Tk =
∑

j

rkjρj , (3.7)

(rkj — transformation matrix elements), by not more
than the uncertainty σk assigned to the experimental
point: (Tk − Ek)2 ≤ σ2

k. However, instead of using
many Lagrange multipliers one uses mainly only single
constraint, namely, that a misfit function:

χ2 =
∑

k

(Tk − Ek)2 /σ2 ≤ const , (3.8)

where const is chosen close to the number of experimen-
tal points. Finally, the following equation for density is
obtained:

ρi = A
ρ0

i exp
(
− 1

2α
∂χ2

∂ρi

)

∑
i ρ0

i exp
(
− 1

2α
∂χ2

∂ρi

) , (3.9)

where α denotes Langrange multiplier appearing in the
prior exp(αS).

Fig. 7. Electron–positron momentum distribution in
Gd for pz = 0. The experimental data used were cor-
rected for resolution [10]. The first Brillouin zone is
marked by white dashed line.

Figure 7 shows the reconstruction of the positron-
-electron momentum distribution from 16 directions mea-
sured in pz = 0 plane [12]. The first Brillouin zone (BZ)
was also depicted (white line). Again, one notices very
clear shape of this distribution and low level of noise.
Moreover, one can observe an increase of density of iso-
lines at the borders of BZ.

Good reconstruction of the electron–positron momen-
tum density turns out to be obtained with much smaller
number of directions. Figure 8 shows comparison of the
results obtained on the grounds of experimental data
from 6 projections (6 different directions from ΓM to
ΓK) and 16 projections with 6-projection reconstruction
treated as a prior. Only little difference between both
panels can be observed for medium momentum range.
General shape and character of acquired distribution
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Fig. 8. Electron–positron momentum distribution in
Gd for pz = 0. Comparison of reconstructions from 6
(left panel) and 16 projections (right panel).

stayed untouched. Also position of the steepest slope at
the BZ is not changed. The difference between these den-
sities, relative to the result obtained from 16-projection
is presented in Fig. 9. Only one bigger cusp can be ob-
served, however, its position corresponds to rather low
level of density and could not be noticed in Fig. 8, where
this area is presented as a background.

Fig. 9. Relative difference between 6- and 16-
-projection electron–positron momentum distribution
in Gd for pz = 0.

Above situation reveals how useful and powerful is the
Maximum Entropy Method technique. Even incomplete
set of experimental data (less than half of available pro-
jections) is sufficient for correct reconstruction. Natu-
rally, too modest data may lead to improper results and
some important details may be lost during reconstruc-
tion.

This kind of reconstructions can be used for determi-
nation of the shape of Fermi surfaces without the need of
fitting a number of parameters when the distribution is
represented as a series in symmetry-adapted harmonics,
see [14–16].

4. Conclusions

The paper present a few novel applications of the
Bayesian reasoning and the Maximum Entropy Method
to true experimental problems. In all cases it is shown
the powerfulness of these techniques, even in such dif-
ficult cases like 3D reconstruction of the hyperfine field
parameters from a 1D Mössbauer spectrum.
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