Effects of Variable Specific Heat Ratio on Performance of an Endoreversible Otto Cycle

R. Ebrahimi
Department of Agriculture Machine Mechanics, Shahrekord University
P.O. Box 115, Shahrekord, Iran

(Received October 29, 2009; in final form March 11, 2010)

Using finite-time thermodynamics, the relations between the work output and the compression ratio, between the thermal efficiency and the compression ratio for an endoreversible Otto cycle are derived with variable specific heat ratio of working fluid. The results show that if compression ratio is less than certain value, the increase of specific heat ratio makes the work output and the thermal efficiency higher; on the contrary, if compression ratio exceeds certain value, the increase of specific heat ratio makes the work output and the thermal efficiency less. The results also show that the maximum work output, the compression ratio at the maximum work output point, the working range of the cycle and the compression ratio at maximum thermal efficiency point decrease as the specific heat ratio increased. The results obtained from this work can be helpful in the thermodynamic modeling and in the evaluation of real Otto engines.

PACS numbers: 05.70.Ln, 82.60.Fa, 88.05.–b

1. Introduction

During the last decade, several authors have conducted optimisation studies for heat engines [1–4]. Much interest has been recently focused on optimisation of the air standard Otto, Diesel, Dual, Miller, Atkinson and Brayton cycles [5–10]. The study for the performance of Otto cycle has been focused on three aspects.

The second aspect is to study the performance of Otto cycle when variable specific heats of working fluid are linear functions of the temperature. Ge et al. [21, 22] considered the effect of variable specific heats on the cycle process and studied the performance characteristics of endoreversible and irreversible Otto cycles. Lin and Hu [23] analyzed the effects of heat loss by a percentage of the fuel’s energy, friction and variable specific heats of working fluid on the performance of an air standard Otto cycle with a restriction of maximum cycle temperature.

The third is to study the performance of Otto cycle with non-linear relation between the specific heats of working fluid and its temperature. Ge et al. [24] analyzed the performance of an air standard Otto cycle with heat resistance, friction irreversible losses and non-linear relation between the specific heats of working fluid and its temperature, by using finite-time thermodynamics.

All of the above mentioned research confirmed that the specific heats at constant pressure and constant volume of working fluid are assumed to be constants or functions of temperature alone and have the linear and or non-linear forms. While calculating the chemical heat released in combustion at each instant for internal combustion engine, the ratio of specific heats is generally modeled as a linear function of mean charge temperature [25, 26]. The model has been widely used and the phenomena that it takes into account are well-known [27]. However, since the specific heat ratio has a great influence on the heat re-
lease peak and on the shape of the heat release curve [28], many researchers have elaborated different mathematical equations to describe the dependence of specific heat ratio on temperature [25, 27–29]. It should be noted that the most important thermodynamic property used in the heat release calculations for engines is the specific heat ratio [29]. Therefore, the objective of this paper is to examine the effect of variable specific heat ratio on the power output and the thermal efficiency of an air standard Otto cycle.

2. Thermodynamic analysis

An air-standard Otto cycle model is shown in Fig. 1. Process 1→2s is a reversible adiabatic compression, while process 1→2 is an irreversible adiabatic process that takes into account the internal irreversibility in the real compression process. The heat addition is an isochoric process 2→3. Process 3→4s is a reversible adiabatic expansion, while 3→4 is an irreversible adiabatic process that takes into account the internal irreversibility in the real expansion process. The heat rejection is an isochoric process 4→1.

![Temperature-entropy diagram for an air standard Otto cycle.](image)

Fig. 1. Temperature-entropy diagram for an air standard Otto cycle.

As already mentioned in the previous section, it can be supposed that the specific heat ratio of the working fluid is a function of temperature alone and has the linear forms:

\[\gamma = \gamma_0 - k_1 T, \]

where \(\gamma \) is the specific heat ratio and \(T \) is the absolute temperature; \(\gamma_0 \) and \(k_1 \) are constants.

The total value of the heat that can be released from the combustion of the quantity \(m_f \) of fuel \((Q_{\text{fuel}}) \) and is controlled by the combustion efficiency, \(\eta_{\text{com}} \), of the fuel in question [30]:

\[Q_{\text{fuel}} = \eta_{\text{com}} m_f Q_{\text{LHV}}, \]

where \(Q_{\text{LHV}} \) is the lower heating value of the fuel.

It is assumed that the heat loss through the cylinder wall is proportional to the average temperature of the working fluid and the cylinder wall and that during the operation the wall temperature remains approximately constant. The heat leak is given by the following linear relation [24, 31]

\[Q_{ht} = m_t B (T_2 + T_3), \]

where \(m_t \) is the mass of air-fuel mixture induced into the cylinder per cycle and \(B \) is constant.

Since the total energy of the delivered fuel \(Q_{\text{fuel}} \) is assumed to be the sum of the heat added to the working fluid \(Q_{in} \) and the heat leakage \(Q_{ht} \),

\[Q_{in} = Q_{\text{fuel}} - Q_{ht} = \eta_{\text{com}} m_f Q_{\text{LHV}} - m_t B (T_2 + T_3). \] (4)

The relations between \(m_a \) (the mass of air induced into the cylinder per cycle) and \(m_f \), as well as between \(M_a \) and \(m_t \) are defined as [30]:

\[m_f = \frac{m_a \phi}{(m_a/m_f)_s}, \] (5)

and

\[m_t = m_a \left(1 + \frac{\phi}{(m_a/m_f)_s} \right), \] (6)

where \(\phi \) is the equivalence ratio, \(m_a/m_f \) is the air-fuel ratio and the subscript \(s \) denotes stoichiometric conditions.

Substitution from Eqs. (5) and (6) into Eq. (4) gives

\[Q_{in} = Q_{\text{fuel}} - Q_{ht} = \frac{m_a}{(m_a/m_f)_s} \times \left[\eta_{\text{com}} \phi Q_{\text{LHV}} - B \left[(m_a/m_f)_s + \phi \right] (T_2 + T_3) \right]. \] (7)

Also the heat added to the working fluid during process (2→3), with using Eq. (6) is

\[Q_{in} = m_t \int_{T_2}^{T_3} c_v dT = m_t \int_{T_2}^{T_3} \left(\frac{R_{\text{air}}}{\gamma_0 - k_1 T - 1} \right) dT \]

\[= \frac{m_a R_{\text{air}}}{k_1} \left(1 + \frac{\phi}{(m_a/m_f)_s} \right) \ln \left(\frac{\gamma_0 - k_1 T_2 - 1}{\gamma_0 - k_1 T_3 - 1} \right), \] (8)

where \(c_v \) is the specific heat at constant volume and \(R_{\text{air}} \) is the gas constant of the working fluid.

The heat rejected by the working fluid, during the process (4→1), with using Eq. (6) is

\[Q_{out} = m_t \int_{T_1}^{T_4} c_p dT = m_t \int_{T_1}^{T_4} \left(\frac{R_{\text{air}}}{\gamma_0 - k_1 T - 1} \right) dT \]

\[= \frac{m_a R_{\text{air}}}{k_1} \left(1 + \frac{\phi}{(m_a/m_f)_s} \right) \ln \left(\frac{\gamma_0 - k_1 T_1 - 1}{\gamma_0 - k_1 T_4 - 1} \right). \] (9)

Because \(c_p \) and \(c_v \) are dependent on temperature, the adiabatic exponent \(\gamma = c_p/c_v \) will vary with temperature as well. Therefore, the equation often used in reversible adiabatic process with constant \(\gamma \) cannot be used for reversible adiabatic process with variable \(\gamma \). However, according to [32, 33] a suitable engineering approximation to the reversible adiabatic process with variable \(\gamma \) can be made, i.e. this process can be divided into infinitesimal processes, for each of which a slightly different value of \(\gamma \) applies. For any
of these processes, when an infinitesimal change of dT in temperature and change of dV in volume of the working fluid takes place, the equation for a reversible adiabatic process with variable γ can be written as follows:

$$TV^{\gamma-1} = (T + dT)(V + dV)^{\gamma-1}.$$ \hspace{1cm} (10)

From Eq. (11), one gets

$$T_j(\gamma_0 - k_1T_j - 1) \left(\frac{V_1}{V_j}\right)^{\gamma-1} = T_i(\gamma_0 - k_1T_j - 1).$$ \hspace{1cm} (11)

The compression ratio is defined as

$$r_c = \frac{V_1}{V_2}.$$ \hspace{1cm} (12)

Therefore, the equations for processes $(1 \rightarrow 2s)$ and $(3 \rightarrow 4s)$ are respectively as follows:

$$T_3(\gamma_0 - k_1T_3 - 1) = T_{4s}(\gamma_0 - k_1T_3 - 1),$$ \hspace{1cm} (13)

$$T_4(\gamma_0 - k_1T_4 - 1) = T_{4s}(\gamma_0 - k_1T_3 - 1)(r_c)^{\gamma-1}. $$ \hspace{1cm} (14)

For the two reversible adiabatic processes $1 \rightarrow 2$ and $3 \rightarrow 4$, the compression and expansion efficiencies can be defined as [31, 34]:

$$\eta_c = (T_{2s} - T_1)/(T_2 - T_1),$$ \hspace{1cm} (15)

and

$$\eta_e = (T_4 - T_3)/(T_{4s} - T_3).$$ \hspace{1cm} (16)

Using Eqs. (8) and (9), one can derive the expressions of the work output and efficiency as:

$$W_{out} = Q_{in} - Q_{out} = \frac{m_a R \text{air}}{k_1} \left(1 + \phi \left(\frac{m_a}{m_f}\right)_s\right) \times \ln \left(\frac{(\gamma_0 - k_1T_2 - 1)(\gamma_0 - k_1T_4 - 1)}{(\gamma_0 - k_1T_3 - 1)(\gamma_0 - k_1T_1 - 1)}\right),$$ \hspace{1cm} (17)

and

$$\eta_{th} = \frac{W_{out}}{Q_{in}} = \frac{\ln \left(\frac{(\gamma_0 - k_1T_2 - 1)(\gamma_0 - k_1T_4 - 1)}{(\gamma_0 - k_1T_3 - 1)(\gamma_0 - k_1T_1 - 1)}\right)}{\ln \left(\frac{\gamma_0 - k_1T_2 - 1}{\gamma_0 - k_1T_1 - 1}\right)}.$$ \hspace{1cm} (18)

When r_c, η_c, η_e and T_1 are given, T_{2s} can be obtained from Eq. (13). Then, substituting T_{2s} into Eq. (15) yields T_2. T_3 can be deduced by substituting Eq. (7) into Eq. (8). T_{4s} can be found from Eq. (14), and T_4 can be deduced by substituting T_{4s} into Eq. (16). By substituting T_1, T_2, T_3 and T_4 into Eqs. (17) and (18), respectively, the power output and thermal efficiency of the Otto cycle engine can be obtained. Therefore, the relations between the power output, the thermal efficiency and the compression ratio can be derived.

3. Numerical examples and discussion

The following constants and ranges of parameters are used in the calculations: $\eta_c = 0.97$, $\eta_e = 0.97$, $m_a = 5.84 \times 10^{-4}$ kg, $k_1 = 0.000003 \rightarrow 0.00009$ K$^{-1}$, $\gamma = 1.31 \rightarrow 1.41$, $B = 1.11$ kJ/kg K, $Q_{hv} = 44000$ kJ/kg, $T_1 = 350$ K, $\eta_f = 100\%$, $r_c = 1 \rightarrow 100$, $(m_a/m_f)_i = 14.6$ and $\phi = 1$ [20–23, 30, 35]. Using the above constants and range of parameters, the characteristics of $W_{out} \sim r_c$ and $\eta_{th} \sim r_c$ can be plotted.

Figures 2–5 show the effects of the temperature-dependent specific heat ratio of the working fluid on

Fig. 2. Effect of γ_0 on the variation of the work output with compression ratio ($k_1 = 0.00006$).

Fig. 3. Effect of k_1 on the variation of the work output with compression ratio ($\gamma_0 = 1.4$).

Fig. 4. Effect of γ_0 on the variation of the thermal efficiency with compression ratio ($k_1 = 0.00006$).
the work output and the thermal efficiency of the cycle. From these figures, it can be found that γ_0 and k_1 play an important role on the work output and the thermal efficiency. It can be seen that the work output versus the compression ratio characteristic and the thermal efficiency versus the compression ratio characteristic are parabolic-like curves. In other words, the work output and the thermal efficiency increase with increasing compression ratio, reach their maximum values and then decrease with further increase in compression ratio. It should be noted that the heat added and the heat rejected by the working fluid decreases with increasing of γ_0, while increases with increasing k_1 (see Eqs. (8) and (9)). It can be seen that the effect of γ_0 is stronger than that of k_1 on the net work output and thermal efficiency. It is also clearly seen that the effects of γ_0 and k_1 on the work output and thermal efficiency are related to compression ratio. They reflect the performance characteristics of an endoreversible Otto cycle engine.

The effects of γ_0 and k_1 on the power output are shown in Figs. 2 and 3. One can see that when $\gamma_0(k_1)$ increases, the maximum work output, the compression ratio at the maximum work output point and the working range of the cycle decrease (increase). This is due to the fact that the ratio of heat added to heat rejected increases (decreases) with increasing $\gamma_0(k_1)$. For this case, when $\gamma_0(k_1)$ increases 7.6% (200%), the maximum power output, the compression ratio at maximum power output and the working range of the cycle decrease by about 11.3% (2%), 20.6% (2%), and 36% (2%) respectively. The results also show that if compression ratio is less than certain value, the increase (decrease) of $\gamma_0(k_1)$ will make the power output bigger, due to the increase in the ratio of the heat added to the heat rejected. In contrast, if compression ratio exceeds certain value, the increase (decrease) of $\gamma_0(k_1)$ will make the power output smaller, because of the decrease in the ratio of the heat added to the heat rejected. It should be mentioned here that for a fixed k_1, a larger γ_0 corresponds to a greater value of the specific heat ratio and for a given γ_0, a larger k_1 corresponds to a lower value of the specific heat ratio.

Figures 4 and 5 reflect the effects of γ_0 and k_1 on the thermal efficiency of the cycle with respect to the compression ratio. With the increasing $\gamma_0(k_1)$, the maximum thermal efficiency increases (decreases) while the compression ratio at maximum thermal efficiency point decreases (increases). In this case, when $\gamma_0(k_1)$ increases by about 7.6% (200%), the maximum thermal efficiency increases (decreases) by 62% (2%) and the compression ratio at maximum thermal efficiency decreases (increases) by about 18.2% (2%). The results also show that if r_c is less than certain value, the increase (decrease) of $\gamma_0(k_1)$ will make the thermal efficiency higher; on the contrary, if r_c exceeds certain value, the increase (decrease) of $\gamma_0(k_1)$ will make the thermal efficiency less.

According to the above analysis, it can be found that the effects of the temperature-dependent specific heat of the working fluid on the cycle performance are obvious, and they should be considered in practice cycle analysis to make the cycle model more close to practice.

4. Conclusions

The finite-time thermodynamic model of a realistic internal combustion engine cycle is a powerful tool for understanding and optimizing the performance of Otto cycles. The relations between work output, thermal efficiency, compression ratio and the specific heat ratio are derived. The detail effect analyses are shown by numerical calculation. The results show that there are optimal values of the compression ratio at which the work output and efficiency attain their maxima. It is also found that if compression ratio is less than certain value, the increase of specific heat ratio makes the work output and the thermal efficiency higher; on the contrary, if compression ratio exceeds certain value, the increase of specific heat ratio makes the work output and the thermal efficiency less. However, the effects of the temperature-dependent specific heat ratio of the working fluid on the endoreversible cycle performance are significant, and should be considered in practical cycle analysis and design. The results can provide significant guidance for the performance evaluation and improvement of real Otto engines.

References

Effects of Variable Specific Heat Ratio ...