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Quasistationary Electron States for CdTe/ZnTe/CdTe
Open Spherical Quantum Dots
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The energy spectra of an electron in open spherical quantum dot (QD) within the effective mass approximation
(EMA) and rectangular potential model is presented. Energy structure of quantum dots is important because
of their possible applications in electronic and optoelectronic devices. For proper description and interpretation
of tunneling processes knowledge of resonant states of quantum dots is necessary. Energy values depend on
parameter like size of system and spatial composition. The lifetimes of the quasistationary states are computed
within the framework of the scattering S-matrix method. It is shown how core radius and barrier thickness for the
CdTe/ZnTe/CdTe example influence electron states and their lifetimes.
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1. Introduction

Research on structures in the nanometers size regime
has proven to be one of the most rapidly growing fields of
modern science over the past two decades. This sector is
investigated by solid state physicists, inorganic chemists,
physical chemists, colloid chemists, material scientists,
and recently even biological scientists, medics and engi-
neers.

In QD as quasi zero-dimensional (0D) system there
is complete discreetness of electron energy levels, bound
state, completely unbound states or resonance states
(temporally bound) [1]. If there is control of QD com-
position, the shape and dimension, the structure of QD
energy levels and number of confined electrons are under
control too [2]. These possibilities have made QD like sys-
tems to become unusually attractive objects for both fun-
damental physics research and device applications. These
systems have potentials to use for high speed, high ef-
ficiency optoelectronics and photonic devices, quantum
dot lasers, high density memory or biosensing and biola-
beling [3–6].

In this paper we present results of calculations of open
spherical QD that consists of the CdTe/ZnTe/CdTe het-
erostructure. We performed our calculations in very well
known and widely used EMA approximation [7–10]. Pa-
rameters for the calculation in EMA are effective masses
of materials in the structure and conduction and valence
offsets between materials. Despite the fact that present
paper presents simplified approach, results for this het-
erostructure are basically correct and very illustrative.
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2. Model

The single quantum dot we consider is barrier spherical
heterosystem composed of CdTe core, ZnTe barrier with
a ∆ thickness (radius r1 − r0) surrounded by CdTe (see
Fig. 1).

Fig. 1. Schematic of a spherical CdTe/ZnTe/CdTe
heteronanocrystal structure, along with the correspond-
ing radial energy diagram.

The dot center is center of our coordinates. Electrons
and holes in such a system are characterized by their
effective masses and potentials. Effective masses are:

m∗(r) =

{
m0 r < r0, r1 < r < ∞
m1 r0 ≤ r ≤ r1 = r0 + ∆

(1)

In this case m∗
0 are CdTe effective masses of electron

and hole, and m∗
1 are ZnTe effective masses.

(768)
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Potentials are:

U(r) =

{
U0,2 = 0, r < r0, r1 < r < ∞
U1 r0 ≤ r ≤ r1

(2)

Considering that electron spectra are mainly formed by
the size quantization, the stationary Schrödinger equa-
tion for a single particle, in this case, may be expressed
as: (

−~
2

2
∇ 1

m∗(r)
∇+ U(r)

)
Ψ(r) = EΨ(r) . (3)

For spherically symmetric potential U(r) the separa-
tion of radial and angular coordinates leads to:

Ψ(r) = Rl(r)Ylm(θ, ϕ) , (4)
where Rl(r) is the radial wave function, Ylm(θ, ϕ) is a
spherical harmonic, l = 0, 1, 2 . . . ; m = 0,±1,±2, . . . .
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0
l [h

−
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+ h+
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1
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− S1
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2
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− Slh
+
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, (5)

where:

Ki =

√
2m∗

i

~2
(Ui − E) =

{
k, i = 0, 2
iχ, i = 1.

h
(±)
l are Hankel spherical functions and Sl is scattering

matrix. The coefficient A2
l = 1/

√
2π is determined by the

normalization condition for Rkl(r),
∫∞
0

R∗kl(r)Rklr
2 dr =

δ(k − k′). The solution must satisfy continuity of the
wave functions and the boundary conditions:

Ri
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∣∣
r=ri
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r=ri

,

1
m∗

i
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l(Kir)
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m∗
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dRi+1
l (Ki+1r)

dr
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r=ri

,

i = 0, 1. (6)
Equations (7) lead to a system of 4 linear equations with
the 4 unknown coefficients (A0

l , A
1
l , S

1
l and Sl).

Expression for the scattering matrix Sl is:

Sl =

(
αl

d
dr1

+ βl − γl
d

dr1
− λl

)
h−l (kr1)(

αl
d

dr1
+ βl − γl

d
dr1

− λl

)
h+

l (kr1)
,

where
αl = m1ζlh

−
l (iχr1)h+

l (iχr0)− h−l (iχr0)
(
h+

l (iχr1)
)
;

βl = km2
0
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)

×
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(
h−l (iχr0)
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−
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+
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.

In the case l = 0, Sl=0 = S0 [11, 12]:

S0(k) = e−2 ikr1
g− + ∆m

g+ + ∆m

e−2χ∆ + g+−∆m
g−+∆mξ0(k)

e−2χ∆ + g−∆m
g++∆mξ0(k)

,

where:

ξ0(k) =
m1kr0 ctg(kr0) + m0r0χ + ∆m

m1kr0 ctg(kr0)−m0r0χ + ∆m
,

∆ = r1 − r0 , ∆m = m0 −m1

and
g± = (m0χ± ikm1)r1 .
For l = 1 , Sl=1 = S1 , S1(k) = e−2 ikr1G+(k)×
e−2χ∆−G∗−ξ1(k)

e−2χ∆−G−(k)ξ1(k) ,

G±(k) =
{

2∆m(1± ikr1)(χr1 ± 1) + r2
1

[
m0χ

2 + m1k
2

±kχr1(km1 + iχm0)
]}/{
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+r2
1
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m0χ

2 + kχr1(km1 − iχm0)
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,

ξ1(k)

=
2∆mη−(1 + χr0) + r2

0

[
m0χ

2η− + m1k
2(1 + χr0)

]

2∆mη−(1− χr0) + r2
0

[
m0χ2η+ + m1k2(1 + χr0)

]

η± = 1± kr0 ctg(kr0) .

Similar expressions, but more complicated, can be
written for S2(k) and ξ2(k).

The real and the imaginary part of the Sl matrix poles
give the resonance energy spectrum Enl and the half-
-widths of the bands Γnl of electron and hole quasi-steady
states in spherical QD; n is numerator of the solution. In
this case Sl matrix poles are not found analytically. In
solving this problem we use approximation that χ∆ À 1.
In this case Sl matrix poles are ξl(k) nulls. S can be
expressed in form:

S(E) = e2 iϕ E − E0 − iΓ/2
E − E0 + iΓ/2

.

Expression for life-time is τn,l = ~/Γnl.
These calculations were performed for electrons, giving

the electron energies Ee
nl, and half-widths of the bands

Γ e
nl, i.e. lifetimes τ e

n,l.

3. Results and discussion

The calculations of the electron spectra in the het-
erosystem under study were performed according to the
model described in the previous section. Parameters of
CdTe and ZnTe effective masses, lattice constants and
conduction offset are transferred from literature [13] (see
Table).
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TABLE
Material parameters of the system: a — lattice constant,
Eg — energy gap, Ue — conduction band offset potential
(energetic scale is Ue = 0 eV in CdTe), m∗ — effective
mass, me — electron mass.

a [Å] Eg [eV] Ue [eV] m∗
e/me

ZnTe 6.1037 2.3 0.67 0.116
CdTe 6.481 1.49 0 0.0999

We investigated the influence of the barrier width ∆
to electron quasistationary energies and lifetimes when
a quantum well dimension r0 is fixed. To illustrate
this influence we present results of our calculations
for dot of core radius r0 = 15aCdTe = 9.7215 nm,
Fig. 2. We present electron quasistationary energy spec-
tra (Fig. 2a,b,c), and electron lifetimes (Fig. 2d,e,f) spec-
tra for l = 0, 1, 2. All energies presented in Figs. 2 and 3
are in energetic scale assumed in Table. Varying barrier
width do not change electron energy level significantly
while the lifetime increases dramatically for all states.
Electron lifetime is higher, i.e. half-width is small, for
the lower energy states. Low energy and high lifetime
is a sign that electron does not penetrate through the
barrier.

Fig. 2. Electron quasistationary energy and lifetimes
dependences on ZnTe barrier thickness ∆ for l = 0, 1, 2
in case r0 = 15aCdTe.

Core radius variations change electron energy position
significantly (Fig. 3a,b,c), as well as quasiparticle life-
times (Fig. 3d,e,f). Increase of r0 lowers electron ener-
gies and increases lifetimes. Barrier of the same height
and width more efficiently prevents electron penetration
through the barrier for larger r0 i.e. larger core.

Resonance energies Enl and half-widths Γnl (life-times
τnl) are functions of core radius r0 and barrier width ∆
dimensions (Fig. 1) and material parameters m∗

0 (elec-
tron effective mass in the core), m∗

1 (electron effective

Fig. 3. Electron quasistationary energy and lifetimes
dependences on CdTe core radius. ZnTe barrier thick-
ness is ∆ = 5aZnTe for l = 0, 1, 2.

mass in the barrier) and U (potential offset between two
materials). Influence of r0, ∆ and U is obvious. Increase
of r0 leads to decrease of resonance energies Enl and half-
-widths Γnl (decrease of life-times τnl). While we are in
regime χ∆ À 1, ∆ does not influence the resonance en-
ergies Enl, and increase of ∆ leads to decrease of half-
-widths Γnl (increase of life-times τnl). Increase of barrier
height U leads to decrease in resonance energies Enl and
half-widths Γnl (increase of life-times τnl).

Influence of material parameters m∗
0, m∗

1 is not so ob-
vious. We scaled over a wide region of m∗

0 and m∗
1 values

and present resonance energies Enl and life-times τnl de-
pendence on m∗

1 and m∗
1/m∗

0 in Figs. 4 and 5. We focused
on lowest energy state (l = 0, n = 1) to illustrate behav-
ior of the system. Energies Enl of the other states have
the similar behavior.

Fig. 4. Electron quasistationary energy and lifetime
dependences on m∗

1 and m∗
1/m∗

0 for fixed parameters:
r0 = 5aCdTe = 3.24 nm, ∆ = 5aZnTe = 3.052 nm,
U = 0.67 eV. Results for CdTe/ZnTe/CdTe (m∗

1 =
0.0999, m∗

1/m∗
0 = 0.116/0.0999 = 1.16) are marked

with (•), and results that correspond to InAs/GaAs/
InAs (m∗

1 = 0.063, m∗
1/m∗

0 = 0.063/0.023 = 2.73) are
marked with (¥).
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Fig. 5. Electron quasistationary energy and lifetime
dependences on m1 and m∗

1/m∗
0 for fixed parameters:

r0 = 17aCdTe = 11.02 nm, ∆ = 5aZnTe = 3.052 nm,
U = 0.67 eV. Results for CdTe/ZnTe/CdTe (m∗

1 =
0.0999, m∗

1/m∗
0 = 0.116/0.0999 = 1.16) are marked

with (•), and results that correspond to InAs/GaAs/
InAs (m∗

1 = 0.063, m∗
1/m∗

0 = 0.063/0.023 = 2.73) are
marked with (¥).

Dependence of the energy spectrum of electrons in an
open InAs/GaAs/InAs quantum dot on core size and bar-
rier width was investigated and presented in detail [12].
Parameters for calculations were: m∗

0 = m∗
InAs = 0.023,

m∗
1 = m∗

GaAs = 0.067, U = 0.535 eV, m∗
1/m∗

0 = 2.73. The
main difference between CdTe/ZnTe/CdTe and InAs/
GaAs/InAs open quantum dot structure is in effective
masses. We will discuss results for parameters close to
InAs/GaAs/InAs.

We have chosen structure r0 = 5aCdTe = 3.24 nm,
∆ = 5aZnTe = 3.052 nm, U = 0.67 eV, and scaled over
m∗

1 and m∗
1/m∗

0. Results for this structure are presented
in Fig. 4. For fixed m∗

1 increase in m∗
1/m∗

0 imply increase
in resonance energies E10 and half-widths Γ10 (decrease
of life-times τ10).

For fixed m∗
1 smaller m∗

1/m∗
0 ratio i.e. larger m∗

0 pre-
vents electron to penetrate through the barrier. For
fixed m∗

0 it is better to have smaller m∗
1/m∗

0 ratio i.e.
smaller m∗

1. As m∗
1 and m∗

1/m∗
0 increase we slowly

leave region where χ∆ À 1 condition is fulfilled. This
is the case for InAs/GaAs/InAs like structure in this
case. For InAs/GaAs/InAs effective mass parameters
and U = 0.67 eV, this quantum dot is to small to be
properly treated in this way. Problem should be treated
more generally, that is beyond the scope of this work.

In case r0 = 17aCdTe = 11.02 nm, ∆ = 5aZnTe =
3.052 nm and U = 0.67 eV (see Fig. 5), energies and half-
-widths are smaller than in the first case. Chosen geom-
etry is similar to the InAs/GaAs/InAs geometry in [12].
E10 and τ10 have the same trend as in the first case. This

core dimension is large enough to prevent electron in this
state to penetrate through the barrier.

4. Conclusions

To illustrate the influence of geometric parameters to
resonance energies we combined CdTe and ZnTe and
formed the spherical heterosystem CdTe/ZnTe/CdTe.

Both the energy levels and the lifetimes of the quasis-
tationary states are found as functions of the geometric
parameters of the system. The lifetime of an electron in
such a system is very sensitive to the geometric character-
istics. We present the analysis of the influence of effective
masses in structure to energy levels and lifetimes.
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