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Indifferents as an Interface between Contra and Pro
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In most sociophysical simulations on public opinion, only two opinions are allowed: Pro and Contra. However,
in all political elections many people do not vote. Here we analyse two models of dynamics of public opinion,
taking into account Indifferent voters: (i) the Sznajd model with symmetry Pro–Contra, (ii) the outflow one move
voter model, where Contra’s are converted to Indifferent by their Pro neighbours. Our results on the Sznajd
model are in an overall agreement with the results of the mean field approach and with those known from the
initial model formulation. The simulation on the voter model shows that an amount of Contra’s who remain after
convertion depends on the network topology.
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1. Introduction

Attempts of statistical physicists to deal with socio-
logical problems is an occurrence relatively new, but the
question on the specific character of social sciences lasts
for the whole history of modern sociology [1]. It seems
that the gap between sociophysics and mathematical so-
ciology is more narrow than the one between empiricistic
and hermeneutical sociologies. From this point of view,
sociophysics can be seen as an overlap of physics and so-
ciology. Mathematical modeling of public opinion, which
are of interest here, covers quite a large part of this area.
A recent review can be found in [2].

As it is known, numerous statistical data on opinions
include simple Don’t know as a third possible answer [3].
Also, indifferents are the target of most electoral cam-
paigns. This means that once the mere existence of this
third option is disregarded, it is hard to understand the
time dynamics of public opinion on any issue. On the
other hand, it seems that once two options are symmet-
rical, an intermediate option is necessary to give a com-
plete picture. This rough notion on symmetry is based on
two examples. The case of election with two candidates
is symmetrical and the indifferent option is natural. The
case of support for an ecological protest is not symmet-
rical, because the indifferent option means ‘no support’.

Motivation of our work comes from the fact that in
the current models of public opinion, neutral or indif-
ferent opinions are usually neglected. Opinions either
vary continuously between Pro (P) and Contra (C), or
— in discrete version — they are limited to these two
cases, P or C. The models of Hegselmann–Krauze [4] and
of Deffuant–Weisbuch [5] belong to the first cathegory,
while the Sznajd model [6–17] falls into the second one,
with [17] as an exception. In some papers, third option
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is considered as third political party [18] or third lan-
guage [19], or three states are completely different in their
nature [20]. The option of the symmetry Pro–Contra
with the neutral state as intermediate one is considered
rather rarely. We can refer to the text of Yang et al. [21],
where the set of states of a network node includes 0 as
the third option apart from ±1. In this paper, the time
dynamics of opinions is ruled by the same law as inter-
acting spins in the presence of magnetic field. Further, in
papers by He et al. [22] and by Dall’Asta and Galla [23]
the voter model with the third state has been simulated
on two-dimensional lattices.

We are going to consider this third option of Indiffer-
ent (I), i.e. neutral state in two models of public opinion
on random networks. The first application is the Sznajd
model with the symmetry Pro–Contra preserved. The
second application is the outflow voter model, where this
symmetry is broken. The purpose of the latter is to refer
to the sociological concept of the spiral of silence [24].
The idea of spiral of silence means that there is a pos-
itive feedback between the social acceptance of a given
opinion and the willingness of its adherents to state it
in open way. Then, the minority opinion gets less and
less support and finally nobody admits to it. Theory
of spiral of silence was formulated by Elisabeth Noelle-
-Neumann in her search for origins of the weakness of
the Anti–Nazi opposition in Germany. This historical
case is of extremal importance, but less famous examples
are more frequent. In 2007, an information in Polish TV
about minister Kaczmarek influenced the poll outcome
on support for two main parties, because adherents of
the Civic Platform preferred to answer Don’t know af-
ter this embarrassing transmission [25]. This variation,
clearly exceeding statistical errors, vanished after a few
days.

The simulation is performed for the Erdös–Rényi net-
work with various mean nodes degrees 〈k〉 and, occa-
sionally, for the growing scale-free and exponential trees.
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In two subsequent sections we explain the formulation
and show the results of the symmetric and antisymmetric
cases, respectively. Last section is devoted to discussion.

2. The Sznajd model

In its original formulation [6], the Sznajd model pos-
tulated two states, say P and C (Pro and Contra). The
rule of time evolution was as follows. A pair of neighbor-
ing nodes, randomly selected, was checked if the nodes
were in the same states. If this was the case, this state
(P or C) was assigned also to all neighbours of each node
of the pair. The basic result was that after a sufficiently
long time, the whole system fell into one of the two states,
P or C.

Our formulation which includes zero state (Don’t
know) and preserves symmetry P–C is defined as follows.
A pair of neighboring nodes (i and j), if they are in the
same state P (Si = Sj = +1) or C (Si = Sj = −1), share
this state with their neighbours n. If the paired nodes
are in opposite states (P–C or C–P), all neighbours of
these nodes become neutral (state S = 0). If any of two
nodes is in the neutral state (Si = 0 or Sj = 0), nothing
changes:

Sn(t + 1) =





Si(t) = Sj(t) if Si(t)Sj(t) = 1,

0 if Si(t)Sj(t) = −1,

Sn(t) if Si(t)Sj(t) = 0.

(1)

Although this fomulation seems to be less restrictive
than the original one, our numerical results indicate
that the result is basically the same. In all investi-
gated cases, the final state of the network is either all-P
(
∑

i Si = +N) or all-C (
∑

i Si = −N) for the whole net-
work. Examples of the time dependence of the amount
of P and C are shown in Fig. 1 for different initial states,
i.e. for various values of 0 < δ < 1/2 parameter. Ini-
tially, a fraction δ of nodes stay in state P (Si = +1) and
C (Si = −1) while (1− 2δ)N actors is neutral (Si = 0).

This result can be compared with the mean-field calcu-
lation, where all local configurations of the network are
approximated by an assumption of perfect mixing. In
this case, the time dependence of the concentration of
Pro (x(t)) and Contra (y(t)) can be written as

ẋ = x2(1− x)− xy2 − αx2y, (2a)

ẏ = y2(1− y)− yx2 − αy2x, (2b)
and the concentration of nodes in the neutral state I is
z = 1 − x − y. Equations (2) preserve the P–C symme-
try. On the right-hand-side of Eq. (2a), the first term
describes the process where two nodes in state P (x2)
convert a node in the ‘non-P’ state (1−x) to the P state.
Next term is responsible to a conversion of P (x) into non-
P by two C (y2). The last term is due to the conversion
of P (x) to I by a P–C pair (xy). We give in parenthesis
terms which the appropriate rates are proportional to. In
principle, the rate of the last process in not necessarily
equal to the others two. To mark the possible difference
of these rates, we introduce a constant α.

Fig. 1. Time evolution of the densities ρ of P, C and I
for various initial concentration δ of P and C. N = 104,
〈k〉 = 10.

According to the known procedure [26], we find the
fixed points (x∗, y∗) and determine their stability; only
stable fixed points are meaningful. The stability condi-
tion is that both eigenvalues of the Jacobian, calculated
at a given fixed point, are negative. Here we get four fixed
points. First one is (0, 0) and its stability is marginal, as
both eigenvalues are equal to zero. However, this fixed
point is not interesting for us, as it corresponds to neu-
tral agents at all nodes of the system. There are also two
fixed points (0, 1) and (1, 0) with eigenvalues (−1,−1) for
any value of α; these fixed points are always stable. The
last fixed point is x∗ = y∗ = β, where β = 1/(2+α), and
its eigenvalues are ±β; this is unstable. As we see, in
this case the mean-field solution agrees with the results
of the numerical calculations.

3. The voter model

On the contrary to the standard formulation of the
voter model [2, 27], here we adopt the outflow version
of the voter model, where nodes influence the state of
all their neighbours. This difference makes sense in ran-
dom networks, where neighboring nodes differ in their
degrees [28]. The outflow behaviour, in the spirit of the
Sznajd model, is motivated by the analogy with the effect
of spiral of silence. Namely, we imagine that one of two
political parties (Pro) gets the power and bans the other
party (Contra). Then, each member of Pro denounces
his/her neighbours who belonged to Contra, converting
them by force to the neutral state. Suppose that the
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initial state concentration is again δ, 1 − 2δ, δ for P, I
(Indifferents) and C, respectively. How the final amount
of Contras depend on δ? In other words, how large the
opposition, now illegal, can be?

Fig. 2. Quotient ϕ of final/initial number of C for var-
ious system sizes N . Initially, the fractions of P and C
among N agents is equal to δ. The mean nodes degree
is 〈k〉 = 20. The results are averaged over Nrun = 5000,
50 and 5 networks realizations for N = 100, 103 and
104, respectively.

The simulation — a strong variant of the spiral of si-
lence — is designed as to fit this construction. At the
initial state, opinions are assigned randomly to the nodes
with probabilities δ, 1− 2δ, δ for P, I and C, respectively.
In one step of simulation, all C which have P as neigh-
bours are converted to I. In Fig. 2 we show the proportion
ϕ of the final amount of C to the initial one, as dependent
on δ. The results can be fitted with the curve

ϕ = 10−γδ〈k〉, (3)
where γ ≈ 0.4. The curve obtained for 〈k〉 = 2 coincides
with the results obtained for the preferential and ran-
domly growing tree, where 〈k〉 is also two. This suggests,
that the network topology could be of minor importance.

In these calculations, the agents moves are performed
only once. Therefore, there is no direct path from the dis-
crete to continuous dynamics. Still for the completeness
we refer to the mean field population dynamics, which
can be written as

ẋ = x(z − αy) (4a)

ẏ = y(z − αx) (4b)
and, as before, z = 1 − x − y. These equations are con-
structed with the following processes in mind: PI → PP ,
CI → CC, PC → II. The rate of two first processes is
chosen to be α. As before, we get x = 1 or y = 1 as the
only stable points. It is worthwhile to note that this time
evolution is slightly different from the Krapivsky formu-
lation of the catalytic processes [29], as there atoms P
and C arise spontaneously. In the latter formulation we
should write ẋ = z−αxy, ẏ = z−αxy and z = 1−x−y.

As we see, x−y is a constant of motion. At the only solu-
tion P and C coexist, on the contrary to the ‘sociological’
formulation in Eqs. (4).

Next, the numerical simulation is repeated in some
milder variant, where the action of P against C depends
on their degrees. Namely, P is allowed to convert C into
I only if P has more neighbours than C. This calcula-
tion is motivated by the interpretation of the degree in
social networks as an index of prestige [30]. Then, in
this mild scenario only more connected agent can influ-
ence the opinion of others. As we see, two meanings of
the term ‘connected’, the topological one and the social
one harmonize. The results of this version of simulation
shown in Fig. 3 indicate that indeed, the ratio ϕ decreases
with δ clearly slower than exponentially.

Fig. 3. C’s are neutralized to I’s only when at least one
of its P’s neighbours is ‘stronger’ (stars and squares).
For comparizon the results when each P in C’s neigb-
hbourhood is able to neutralize it are included as well
(pluses and crosses).

The role of degree can be investigated yet in another
variant of calculation. Let us suppose that just before the
opinion C is banned, C are able to convert to I all P who
have no links to other P’s. This modification is applied to
the strong variant of the spiral of silence. The motivation
of this variant comes from the question, if it is desirable
for the opposition C — just about to be banned — to
neutralize those P who are isolated, by force if necessary.
We are glad to announce that this method seems not to
be fruitful. Two curves in Fig. 4 — with and without this
extra neutralization — almost coincide. Small differences
appear only in the range of small values of δ, where the
consequences of the whole ban are less severe.

In the last variant of our simulation the conversion is
not from C to I, but from I to P, with two additional con-
ditions. First is that a neutral node I is converted only
if it has more neighbours in the state P than in the state
C. Second limitation is that those converted do not con-
vert further. This calculation is an attempt to refer to the
asymmetric scenario, when the ruling opinion is imposed
forcefully to those who are neutral or indifferent. History
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Fig. 4. (a) Ps without contact with other Ps are elim-
inated. (b) Only those Ps are eliminated which have at
least one neighbour C.

of Central Europe in 1944–49 brings examples, where the
percentages of supporters of new power were quite large.
In Fig. 5 we show the rate ψ of those converted to the
initial amount of adherents of P. The obtained data can
be rougly fitted as ψ ∝ δ−ρ with ρ ≈ 1.14. This parame-
terization reveals that the smaller is the amount of initial
Pro’s, the more surprising can be the majority collected
in the above mentioned way.

Fig. 5. All undecided I are forced to vote for P, if they
have more neighbours P than C. ψ ∝ δ−1.14 for average
node degree 〈k〉 = 20.

4. Discussion

We presented a set of simulations motivated by vari-
ous social and/or historical contexts. The new element
of this work is the possibility of the indifferent state in
the set of opinions. As we argued in the Introduction,
this modification of the existing models of public opinion

is justified by options which are allowed in polls. This
link — from real data to the model — evades at least
some aspects of the discussion on the relation between
sociological phenomena and their measurements [31].

Our results on the Sznajd model are in an overall agree-
ment with the results of the mean field approach and with
those known from the initial model formulation [6]. The
mechanism of the opinion propagation by creating its new
supporters, who propagate it further, is not influenced by
the amount of neutral nodes.

In the one move voter model neutral nodes can form
an environment where the opponents to the option in
power can be preserved at least to some extent. Here,
the comparison of the simulation results with those of
the mean field approach indicates that the results are
sensitive to the network topology. Networks are defined
without space; they have no boundaries but they have
peripheries. In the one move voter model the converted
nodes do not propagate the ruling opinion. Agents being
Contra can then be preserved in the network peripheries,
at the low connected nodes.

To conclude, the third indifferent option between the
dichotomy ‘Pro–Contra’ is an ingredient which shifts
mathematical models closer to the results of sociological
polls. With this modification, the spectrum of applica-
tions of the models gets wider. In our opinion, conver-
sions from Pro to Contra are rather rare. When mod-
eling, more attention should be payed to the boundary
between Pro and Indifferent and the one between Indif-
ferent and Contra. Our results indicate, that each of
these boundaries is governed by its own dynamics.
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