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Sign and Amplitude Representation of the Forex Networks
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We decompose the exchange rates returns of 38 currencies (including gold) into their sign and amplitude
components. Then we group together all exchange rates with a common base currency, construct Minimal
Spanning Trees for each group independently, and analyze properties of these trees. We show that both the sign
and the amplitude time series have similar correlation properties as far as the core network structure is concerned.
There exist however interesting peripheral differences that may open a new perspective to view the Forex dynamics.
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1. Introduction

A series of recent papers [1–4] shows that the currency
exchange market has interesting properties if expressed
as a network in different representations corresponding to
different base currencies. Each representation is defined
by a set of exchange rates sharing a given base which can
form, via their cross-correlations, a binary or weighted
network. Depending on a particular choice of the base,
the network displays a hierarchy with clusters of coupled
currencies, with one or a few hubs and many peripheral
nodes, among which a scale-free order can be observed.
A node of the highest centrality is USD, which attracts
a number of satellite currencies due to strong economi-
cal ties between the corresponding countries or explicit
currency pegs. However, a careful inspection of the tem-
poral evolution of the currency network, one observes a
clear long-term trend according to which the USD node
gradually loses its strength giving more freedom to its
previously coupled neighbours. By studying the tempo-
ral stability of the network structure in different repre-
sentations we showed that the only major currency which
gains some importance owing to this trend is EUR [3].

In the present paper we take a closer look at some sub-
tleties of the currency couplings. We study time series of
daily exchange rates for a set of N = 38 free-convertible
currencies and gold [5]. Our data spans a decade-long in-
terval from Jan 1, 1999 to Dec 31, 2008 (T = 2519 trading
days) and consists of all possible N(N − 1) = 1406 com-
binations of the exchange rates B/X ≡ ΓB

X , where B is
called the base currency (this rate expresses how many
units of X one needs to buy 1 unit of B). The exchange
rates ΓB

X (i), i = 1, . . . , T obey the two fundamental rela-
tions:

ΓY
X (i) = 1/ΓX

Y (i) , (1)

ΓY
X (i) = ΓY

Z (i)ΓZ
X (i) . (2)

which reduce the effective dimensionality of the phase

space. The second relation is called the triangle rule.
In both relations we neglected the transaction costs. As
usual in this type of analysis, due to strong nonstation-
arity of the exchange rates, we consider their logarithmic
increments

gB
X(i) = lnΓB

X (i + 1)− lnΓB
X (i) . (3)

Each time series of gB
X(i) was preprocessed to remove

possible artifacts. A filter was also used in order to
remove exceptionally high values which could influence
outcomes of numerical analysis. Those returns whose
absolute value exceeded a threshold p = 10σ (σ denot-
ing standard deviation of the time series) were replaced
by ±p.

We want to avoid constructing of a single network from
all the exchange rates since such a network would be
large, information-overloaded, and difficult to compre-
hend (even though this kind of study can in principle be
carried out — e.g. [6]). Therefore we divide the whole
set of time series into much smaller subsets consisting of
the exchange rates with a given base currency B. An
advantage of this approach is that by fixing B and con-
sidering only the rates B/X we effectively eliminate this
currency from an analysis. As a consequence, instead of
the less convenient exchange rates, we can speak of the
individual currencies and the relations between them.

For a given subset of (normalized) time series, we con-
struct an (N−1)×T data matrix MB and then calculate
the correlation matrix RB :

RB
XY =

1
T

MB
XM̃

B

Y , (4)

where tilde stands for matrix transpose. Matrix elements
RB

XY are the correlation coefficients calculated for a pair
of rates B/X and B/Y and can be considered a mea-
sure of couplings between currencies X and Y in the
B-based representation of the market. By construction,
RB

XY = RB
Y X . The matrix RB completely defines the

structure of an undirected network, in which currencies,

(681)
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expressed in terms of B, are nodes and the matrix ele-
ments are connection weights ωB

XY = |RB
XY |.

Such a network can be visualized as a complete graph,
but this would not be an optimal graphical representation
in our case of fully connected networks with N − 1 = 37
nodes and (N − 1)(N − 2)/2 = 666 internode links. In-
stead, we prefer to consider a minimal spanning tree
(MST) [7] — a subset of the whole network, consisting of
all N−1 nodes and only N−2 links. In order to calculate
MST, we change the correlation matrix into a distance
matrix DB with elements defined by the metric:

dB
XY =

√
2(1−RB

XY ) . (5)

In general, 0 ≤ dB
XY ≤ 2; special cases are: dB

XY = 0 for
identical signals, dB

XY =
√

2 for uncorrelated signals (in
the limit T → ∞), and dB

XY = 2 for signals opposite in
phase. Based on the distance matrix DB , MST is created
by sorting its elements from the largest to the smallest,
and connecting the nodes with links according to this
ranking in such a manner that each pair of nodes may be
connected only via a single path (no cycles allowed). This
assures the dendric structure of the MST graph with a hi-
erarchy of nodes such that the nodes which have in terms
of dB

XY many close neighbours are higher in the hierarchy
than the ones which are rather isolated. Although MST
is only a specific choice of the network representation out
of a broad spectrum of possible graphs, its usefulness in
expressing the core information on the network structure
has been shown in literature [8, 6, 9, 3]. Using MST will
make the graphical representation of our networks much
more readable.

2. Results

In many models of the financial data, the returns are
decomposed into two independent components expressed
by a product of signed and unsigned stochastic processes.
Typically, the former describes the fast changes of the
signal and the latter corresponds to slow variations of
volatility. Sometimes the statistical properties of these
processes are even more different, as it is in the Man-
delbrot multifractal model of asset returns, where the
signed process is monofractal, while the unsigned one is
multifractal. Such decomposition of the artificial data
motivates us to consider a similar decomposition of the
empirical data. In this case the slowly variable unsigned
process could be the time-averaged amplitude of the re-
turns (e.g. in windows of a given length). In the present
study, however, such averaging should not be performed
since our time series are too short. Due to this difficulty,
instead of considering the fast and slow components, we
prefer to study time series decomposed into their sign
and amplitude parts

gB
X(i) = sgn

(
gB

X(i)
)|gB

X(i)| = sB
X(i)aB

X(i) . (6)
The signal aB

X is thus the instantaneous volatility instead
the time-averaged volatility. We ask whether the net-
works based on such components share the same prop-
erties as the networks based on the original data. In

other words, we ask whether the sign and the amplitude
components share the same information on the currency
market as do the complete signals.

Fig. 1. Original time series of returns (a) decomposed
into sign (b) and amplitude components (c). Gaps cor-
respond to non-trading days.

In Fig. 1 we show the exemplary original signal and its
components. We start our presentation with the choice
XAU (gold) as the base currency. Gold, although at
present cannot be considered a proper currency, is histor-
ically related to the currency market and its price evo-
lution offers a convenient, independent reference frame
for the whole market. MSTs for the XAU-based network
are shown as weighted graphs in Fig. 2. Feature which
is most striking is that for both types of signals all the
internode connections have high weights. This is a man-
ifestation of the fact that gold price is largely decoupled
from the currency market, which in this representation
acts as a large global cluster. At a more detailed level,
the structure of internode connections among the nodes
shows two prominent local clusters concentrated around
USD and EUR, with the former clearly with a higher
centrality than the latter. This picture remains qualita-
tively similar for the sign and the amplitude except for
some minor restructuring of peripheral branches (which
is a noise-like effect). This similarity together with the
heavy weights suggest that gold price fluctuations have
the same direction and magnitude if expressed in almost
any currency. In other words, the gold price fluctuations
are stronger (on average) than the fluctuations of all the
exchange rates between currencies. This is an anticipated
result.
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Fig. 2. Weighted MST graphs for the XAU-based network. The original signals of returns are decomposed into (a)
signs, (b) amplitudes. Width of internode connections is proportional to connection weights.

Fig. 3. Weighted MST graphs for the EUR-based network: (a) signs, (b) amplitudes.

Fig. 4. Weighted MST graphs for the USD-based network: (a) signs, (b) amplitudes.

The EUR-based networks for signs (a) and amplitudes
(b) is presented in Fig. 3. We see that although average
connection weights are much smaller than in the previous
case of XAU-based network, the structure is to a large ex-
tent similar. There is also no prominent node reshuffling
between the sign-based and the-amplitude based repre-
sentations. USD occupies the central position in both
MSTs with slightly more links in the case of signs (17 vs.
21). Average weights are comparable in both cases.

Let us now look at the MSTs as viewed from the USD
perspective (USD is the base currency, Fig. 4). Such net-
works are expected to be least coupled and large group
of nodes behave as if the network was random. Figure 4
shows both the amplitude-based and the sign-based trees,

which, as in Figs. 2 and 3, do not present any meaningful
differences between their structures. In both graphs EUR
plays a role of the main hub with the same multiplicity,
attracting all other European currencies as well as MAD
and TND, which are in the EUR basin of attraction. The
secondary hub, AUD, is also prominent with comparable
number of links as EUR, but with smaller weights. For
both types of signals, it attracts its standard neighbours:
NZD, CAD, ZAR, and XAU. However, for the amplitude
signals connections are stronger than for the sign ones.
AUD also attracts more nodes in the case of amplitude
signals among which notable examples are MXN and ISK
which are not connected with this node if signed time se-
ries are considered (both signs and returns). It is worth
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noting that for both types of signals (as well as for the
complete signals discussed in [3]) AUD reveals largely in-
dependent dynamics, different from both USD and EUR.
This is expressed by the fact that, in MSTs, its clos-
est neighbours are some other, peripheral currencies and
the corresponding edges have small weights. (A curious
placement of ISK in this and other trees in Figs. 2–4, con-
trary to its expected relation to EUR, may originate from
the financial crisis which took place in Iceland in 2008,
which led this currency to devaluation and its consequent
decoupling from the EUR-based cluster, observed even in
the 10-year-long signals.)

As regards the secondary cluster structure, especially
the South–East Asian and the Latin American cluster,
it occurs that they are based on signs, at least to some
extent, which is not the case for the strongest clusters
of European and commodity-related currencies. In gen-
eral, it is observed that for the USD-based network the
amplitude signals do not develop so clear regional cluster
structure as the signed signals.

Let us now consider the MST topology in a quantita-
tive manner by means of the characteristic path length
LB given by the formula

LB =
1

N(N − 1)

∑

X,Y :X 6=Y

lB(X,Y ) , (7)

where lB(X, Y ) stands for length of the path connect-
ing nodes X and Y . Characteristic path length measures
how compact is the tree in a given network representa-
tion B: low values of LB describe a compact MST with
short connection paths between any pair of nodes, while
high values of LB correspond to a “stretched” tree with
long branches. A stretched structure of a Forex-based
MST would thus mean that there is no node attracting
a significant number of other nodes and that a typical
node have a few closest neighbours. In contrast, a com-
pact MST would be related to the existence of one or at
most a few central nodes with many connected satellites;
a typical node would be a satellite of a central node and
would therefore have only one neighbour. From a point
of view of the base currency B, a high value of LB and, at
the same time, small values of LB′ for many other base
currencies B′, can suggest that the currency B consti-
tutes a high-degree node in the B′-based trees; removing
this node from the network by selecting the related cur-
rency to be the base gives freedom to its satellites and
stretches MST.

TABLE
The characteristic path length LB and average weighted clustering coefficient C̃B for a few representative
choices of the base currency B calculated for the full period 1999–2008 and deconstruct the real data into sign
and amplitude components.

Base: CHF CZK EUR GBP GHS JPY PLN USD XAU
LB

(return) 1.63 1.73 1.53 2.33 1.55 1.95 1.99 4.10 1.65
LB

(sign) 1.95 1.77 1.72 2.12 2.02 1.85 1.79 4.25 1.86
LB

(abs) 1.59 1.67 1.60 1.93 1.96 1.69 1.67 4.13 1.64
C̃B

(return) 0.431 0.202 0.333 0.311 0.929 0.512 0.511 0.111 0.712
C̃B

(sign) 0.358 0.181 0.312 0.329 0.919 0.391 0.371 0.139 0.911
C̃B

(abs) 0.326 0.175 0.309 0.308 0.921 0.377 0.389 0.139 0.771

Results for our data are shown in Table for a few
base currencies. On average, the most distributed MSTs
(largest LB) are formed by the signs, while the original
signals (returns) and their absolute values are character-
ized by more compact MSTs. As expected, the longest
paths characterize the USD-based trees which reflects the
least correlated nature of this representation of the cur-
rency network. On the opposite end are the EUR-based
trees. This is also understandable due to the fact that
if EUR is chosen to be the base, there remains only one
hub (USD) which makes the network highly centralized
(Fig. 3).

Another measure which can provide us with some in-
sight into the network topology is the weighted clustering

coefficient. It is defined for a complete network as [10]:

C̃B =
1
N

∑

X

c̃B(X) , (8)

where

c̃B(X) =
1

kB
X(kB

X − 1)

∑

Y,Z

(
ω̃B

XY ω̃B
Y Z ω̃B

ZX

) 1
3 ,

ω̃B
PQ =

ωB
PQ

maxPQ[ωB
PQ]

. (9)

In this case kB
X is the degree of node X. The corre-

lation coefficient, which can be defined for both binary
and weighted networks, assumes non-zero values if the
network comprises many triangles. A triangle is a motif



Sign and Amplitude Representation of the Forex Networks 685

Fig. 5. Weighted clustering coefficient C̃B(t) for a few exemplary choices of the base currency. In each part three types
of data are presented: original signals (dashed black), signs (heavy red), and amplitudes (heavy green).

characterized by the following condition: if a node i is
connected to a node j and to a node k, this implies that
the nodes j and k are also mutually connected. For the
weighted networks, in order to take the weights into con-
sideration, this definition can be altered according to Eqs.
(8) and (9). Thus, the weighted clustering coefficient as-
sume high values if the above condition is fulfilled but
additionally all the triangle edges have high weights.

Numerical values of C̃B are collected in Table for the
same base currencies as before. The results are highly
B-dependent. For CHF, EUR and other continental Eu-
ropean currencies, the clustering coefficient is highest for
the original signals and lowest for the amplitudes, with
the difference being largest for CHF and PLN. The same
refers to JPY. In contrast, for the XAU-based and the
GBP-based networks the highest clustering is observed
for the signs, while both the amplitudes and the returns
are significantly less clustered. USD is somehow peculiar
in this respect, with equal level of clustering for the signs
and the amplitudes, and a smaller level of clustering is
observed for the returns.

We also consider the temporal stability of C̃B by us-
ing a moving window of 120 trading days (approximately
6 months). The results are presented in Fig. 5 for 4 base
currencies and XAU. The most interesting observation is
that for some choices of B, the network topolgy is much
more stable in the case of the decomposed signals (the
signs and the amplitudes) than in the case of original
returns.

This is true for GBP, JPY, and EUR, but not true
for XAU and USD. These deconstructed signals exhibit
sometimes different trends that the original complete sig-
nals, as it can be seen, e.g., in the case of the USD-
-based network. Nevertheless, in the case of the signs and
the amplitudes, the EUR-based network exhibits a clear
downward trend, similar to the one for the returns, indi-
cating that the network viewed from the EUR perspective

Fig. 6. Characteristic path length LB(t) for the EUR-
-based and the USD-based network representations.
Three types of data are presented: original signals (thin
black), signs (heavy red), and amplitudes (heavy green).
Black solid line indicates a linear trend in LEUR(t) for
the returns.

becomes more random-like (small clustering) than in the
early years of EUR (Fig. 6). This observation can be di-
rectly verified by looking at Figs. 7 and 8, in which MST
graphs calculated in two-years-long windows are shown
(signs in Fig. 7 and amplitudes in Fig. 8). These results
can be considered another manifestation of an increasing
role of euro in the world trading system [1, 3].
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Fig. 7. Minimal spanning trees for the USD-based network calculated for the sign time series in subintervals of 2 years
(a)–(e). Green edges connect anticorrelated nodes.

Fig. 8. Minimal spanning trees for the USD-based network calculated for the amplitude time series in subintervals of
2 years (a)–(e).
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3. Conclusions

In summary, we studied the time series of currency
exchange returns decomposed into their sign and ampli-
tude components. We showed that the MST graphical
structure does not change considerably for the compo-
nents if compared with the original signals. However,
more precise quantitative tools such as the characteristic
path length and the weighted clustering coefficient indi-
cate some restructuring of nodes and connection weights.
We also observed that temporal stability of the networks
for the components is better than for the returns. These
are preliminary conclusions and more work is needed in
order to better understand their significance.
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