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1. Introduction

Following [1, Definition 2, p. 19], we say that a utility
function U is invariant to a continuous transformation g,
provided it satisfies the following functional equation

Ulg(z, 2)) = k(2)U(z) + £(2), (1)
with some functions k and ¢. If g is a shift transforma-
tion, that is g(z,2) = v + 2z, Eq. (1) reduces to

Uz + z) = k()U(z) + £(2) (2)
and a utility function U satisfying (2) is said to be
invariant under shift transformation.  Some results
concerning utility functions invariant under shift trans-
formation could be found e.g. in [1] and [3-5]. In a
recent paper [2] this notion has been extended into the
case of n-attribute utility functions. The problem in a
natural way leads to the following generalization of (2)

U(xy+ 21,y Tn + 2n)

= k(z1,...,20)U(21,...,2n) + (21, .., 20) - (3)
It turns out that in many cases (e.g. if the initial
wealth of the decision maker is in the form of annuity
payment which pays an amount z at every period for
n successive periods) it is reasonable to assume that
the utility function satisfies invariance just when the
shift parameters are identical for each attribute, i.e.
z1 = ... = z, = z with z in an interval of positive
length. It is clear that in such a case Eq. (3) reduces to

Ui+ 2,.. ., xn + 2)

= k(2)U(x1,...,25) +£(2). (4)
Equation (4) has been already solved in [2] un-
der the assumptions that D is a non-empty
open set, for every (z1,...,z,) € D, the set
Vier,oan) = 12 € R|(z1+2,...,2,+2) € D} is an inter-
va,U:D — R, k,£:Vp = U(ml,...,azn)ED Vier,.zn) — R
are unknown functions, and a function
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Vigr, e 22 = U(x1 +2,..., 20 + 2) (5)
is non-constant for at least one (z1,...,z,) € D.
However, it is easy to check that [2, Theorem 4.3, p. 9]
remains true if, instead of the openness of D we assume
that, for every (z1,...,2,) € D, the set V(,, .. is an
open interval. In order to formulate that result in such
a modified version, we need to introduce the following
notation. Let

T := {(xz_3317._,,mn—m1)|($1,...,xn) ED}

and, for every (t1,...,tn_1) €T,

Furthermore, given a function ¥ : T — R, we set

Vipzo = U

(T150esTn ) ED Y (T2—T 1,00, T —T1)#0

‘/((El,...,.'L'n,) °

Theorem 1. Let D be a nonempty subset of R™ such
that, for every (x1,...,2n) € D, Vig, .. 2.) 15 an open
interval. Assume that U : D — R, k, 0 : Vp — R and
a function given by (5) is non-constant for at least one
(1,...,2n) € D. Then a triple (U, k, ) satisfies Eq. (4)
for all (x1,...,2,) € D and z € Vi, . 4.y if and only if
one of the subsequent two conditions holds:

(@) there exist a nonconstant additive function a : R —
R and a function ¢ : T — R such that

k(z)=1 for z € Vp
Lz) =a(z) for z € Vp
U(xy,...,xn) =0(x2 — 21,...,Tn — X1)

+a(z1) for (x1,...,2,) € D;

(i1) there exist a nonconstant exponential function e :
R — R, a constant ¢ € R and a not identically zero
function ¢ : T — R such that
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k(z) =e(z) for z € Viyzo
0(z) =c(1 —k(z) for z € Vp
Uy, . xn) =e(x1)VY(x2 — 21, ..., Tp — 21)

+c for (x1,...,zn) € D.

The aim of the present paper is to complete the results
of [2] by determining all solutions of (4) such that a func-
tion given by (5) is constant for every (z1,...,z,) € D.

2. Results

We begin this section with the following remark
Remark 1. Since, for every (21,...,2,) € D, Vig, .. 2.)
is an open interval containing 0, it is clear that, for every
(t1,...,tn_1) € T, V{rstn=1) g also an open interval
containing 0. Moreover, for every (t1,...,tp—1) € T,
V(t1tn1) §g symmetric with respect to 0. In fact, if z €
V(titn-1) then z € Vier,....zn) for some (x1,...,x,) €
D with (3 — 21,...,2p, — 21) = (t1,...,tn—1). Thus,
(r1+2,...,2n +2) € D, whence —2z € V(g 42 a0 42)-
As (xo+z—(x142), ..., xpt+z—(21+2)) = (t1, ..
this means that —z € V{(t1tn—1)

The next theorem is a main result of the paper
Theorem 2. Let D be a nonempty subset of R™ such
that, for every (z1,...,2n) € D, Vig, . &,) 15 an open
interval. Assume that U : D — R, k¢ : Vp —
R and a function given by (5) is constant for every
(x1,...,2n) € D. Then a triple (U, k, ) satisfies Eq. (4)
for all (x1,...,2,) € D and z € Viy, .y if and only if
there exist a constant d € R and a function ¢ : T — R
such that

. atn—l)v

’lp(th s 7tn—1) =d
whenever V(ttn=1) \ ETH({1}) £ 0, (6)
Uz) =d(1—k(z)) for ze€lp (7)
and
Uz, ...,¢n) =0(T — X1,...,Tp — X1)
for (z1,...,2,) €D. (8)
Prof: In order to prove that (8) holds with some

function v : T — R it is enough to show that, for every
(x1,--,2n), (Y1,---,yn) € D, the following implication

is valid:
(xo— 21, .y —x1) = (Y2 — Y1y -+ s Yn — Y1)
= U(x1,...,20) =UW1,--,Yn) -
To this end, fix (z1,...,2,), (y1,...,9yn) € D and sup-
pose that (z2 —21,...,Zn —21) = (Y2 — Y1y, Yn — Y1)-
Then y; = x; + (y1 — 1) for j = 1,2,...,n and so,

using the fact that a function given by (5) is constant

for (x1,...,z,), we get
Ui, - yn) = U@+ (y1 —21), -y T + (Y1 — 1))
= U(.%‘l,...,l‘n).

Therefore, (8) is proved. Now, note that as a function
given by (5) is constant for every (xi,...,z,) € D,

from (4) and (8) we derive that
z) =1 —k()(xe —x1,...,2y — 21)

for (x1,...,2,) € D,z € V@ 2@n=z1) - (9)
Thus, if k is identically 1, then £ is identically 0. Hence,
taking an arbitrary d € R, we get the assertion. So,
assume that k is not identically 1. Put

V];r ={zeVpnNJ0,00)|k(z) # 1}
and

V5 ={z € VpN(—00,0)|k(z) # 1}.

Clearly, at least one of the sets VD+ and V[, is nonempty.
Assume that VI # 0 and let zg := inf Vii". Let {2} be

a sequence of elements of VD+ converging to ZO+ . Fix a
z € VS‘ and (71,...,2,) € D with z € V(g . 4,). Since

zar < z and V(4 . 4, is an interval containing 0, for
sufficiently large n € N, we have 2, € Viz,...,a)- Then,
in view of (9), for sufficiently large n € N, we obtain

Uy = (1— k(zD) (a2 — @1, ..., @0 — 41,
whence
+
nnf;o% = YTy — B0, ..., T — 31) =: d.

Next, taking an arbitrary (z1,...,z,) € D such that
Vizr,zn) N Vf,r # () and arguing as previously, we get
that
0zt
d= lim 7('2" ) T
In this way we have proved that there is a d € R such
that

:w(xQ—xl,...,xn—xl).

= Y(xe —x1,...,2np —x1) =d. (10)
Analogously, one can prove that, if V[ # 0, then there
exists a d € R such that

‘/(asl,...,zn) N VD_ 7é @

:>’(/J(3?2—$1,...,$n—$1):d. (11)
Now, in order to show (6) it remains to prove that if both
sets VD+ and V;' are nonempty, then d = d. So, suppose
that Vi # 0 and Vi # 0. Let z; := supV} and,
as previously, zy = inf V. Assume that z; > —z;
(in the case where z; < —zf, the proof runs anal-
ogously). Then 0 < z; + 25 < 27 whence, taking
(z1,...,2,) € D such that Vi, . NV # 0, we get

ZO_ + 28_ € W$17~--a$n) and so ZO_ € VP(lerzar ..... szrz(T)'
Since V(ac1+z§f cwntzl) is an open interval, this
means that Vi, . . ..o NV # 0. Thus,
by (11), ¢(z2 — 21,...,2, — 1) = d. On the

other hand, as V(g, . ..) N Vi # 0, by (10), we get
Y(xy — 21,...,2y — 1) = d. Hence d = d and so (6)
is proved. Finally, we show that (7) holds. Since k is
not identically 1, there is zp € Vp with k(z9) # 1. Let
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(29,...,29) € D be such that zy € V{E—olan—ol)
Then V(@2=a%.zp—o1) \ k71({1}) # 0 and so, in view
of (6), we get Y(x) —29,...,20 —29) = d. Thus, making
use of (9), we conclude that

0(z) =d(1 — k(z)) for ze V@E—almn=at) (19
Now, let z € Vp be arbitrary and (z1,...,2,) € D
be such that z € V®@~#1w2n=21)  According to
Remark 1, V@ =elesh=al) apnd V(@21 on—a1)
are intervals symmetric with respect to 0.  Thus,
cither V(@—oimmm—z1)  c  yli-elahoal) o
y(@z=alian—al) — y@2—en.zn—21)  In the first case,
in view of (12), we get £(z) = d(1 — k(z)). In the second
one, we have V(#2=21@n=z1) \ k=1({1}) # () which,
together with (6) and (9), gives again £(z) = d(1 — k(z)).
Therefore (7) holds and the proof is completed.
Example 1. Let D = Dy U Dy, where

Dy :{(xl,xg) ER2|1§1‘2—$1 <2,1<x1+ x5 <2}

and

Dg:{(ml,x2)6R2|O<x2—x1<1,1<x1+x2<3}.

Then, for every (x1,22) € D, the set Vi, ,,) is an open
interval. In fact, we have

§ 17(x;+$2)’ 2*(96;”2) for (z1,72) € Dy
(z1,22) — —(z1+ G
1,T2 1 (éJr 2)73 (§+ 2) for (xlaxQ)eDQ'
Thus Vp = (-1, 1). Furthermore, we have T' = (0, 2)
and
t (_L 1) for t < <0’ 1)
V= 11
(—3.5) for tell, 2).

Fix d € R and A € [0,00). Let k: (=1,1) — R be an
arbitrary function such that k=*({1}) = [-A, A] and let
(z) =d(1 —E(2)) for z € (—1,1). Note that:

— if A > 1then V*\k=1({1}) = 0 for every t € (0,2);

—if A € [1,1) then V' \ k7' ({1}) # 0 for every
te(0,1);
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—if A € [0,1) then V' \ k7*({1}) # 0 for every
t € (0,2).

Therefore, applying Theorem 2, we conclude that a triple
(k,0,U), where U : D — R, satisfies (4) if and only if

U(zy,x2) = Y(xe —x1) for (x1,22) € D,
where v : (0,2) — R is such that:

a) 1|(0,1) = d in the case where A € [1,1);

b) 1 = d in the case where A € [0, 3).

3. Conclusion

In several cases, the initial wealth of the decision maker
is in the form of annuity payment which pays an amount
z at every period for n successive periods. In such
cases, a multiattribute utility function is invariant under
shift transformation, provided Eq. (2) holds with some
functions k£ and ¢. This equation has been considered
in [2] under the assumption that a function given by (5)
is non-constant for at least one (x1,...,2,) € D. In
the present paper we complete the results in [2] by de-
termining the functional form of utility function in the
case where a function given by (5) is constant for every
(x1,...,2n) € D.
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