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1. Introduction

Following [1, Definition 2, p. 19], we say that a utility
function U is invariant to a continuous transformation g,
provided it satisfies the following functional equation

U(g(x, z)) = k(z)U(x) + `(z) , (1)
with some functions k and `. If g is a shift transforma-
tion, that is g(x, z) = x + z, Eq. (1) reduces to

U(x + z) = k(z)U(x) + `(z) (2)
and a utility function U satisfying (2) is said to be
invariant under shift transformation. Some results
concerning utility functions invariant under shift trans-
formation could be found e.g. in [1] and [3–5]. In a
recent paper [2] this notion has been extended into the
case of n-attribute utility functions. The problem in a
natural way leads to the following generalization of (2)

U(x1 + z1, . . . , xn + zn)

= k(z1, . . . , zn)U(x1, . . . , xn) + `(z1, . . . , zn) . (3)
It turns out that in many cases (e.g. if the initial
wealth of the decision maker is in the form of annuity
payment which pays an amount z at every period for
n successive periods) it is reasonable to assume that
the utility function satisfies invariance just when the
shift parameters are identical for each attribute, i.e.
z1 = . . . = zn = z with z in an interval of positive
length. It is clear that in such a case Eq. (3) reduces to

U(x1 + z, . . . , xn + z)

= k(z)U(x1, . . . , xn) + `(z) . (4)
Equation (4) has been already solved in [2] un-
der the assumptions that D is a non-empty
open set, for every (x1, . . . , xn) ∈ D, the set
V(x1,...,xn) := {z ∈ R|(x1+z, . . . , xn+z) ∈ D} is an inter-
val, U : D → R, k, ` : VD :=

⋃
(x1,...,xn)∈D V(x1,...,xn) → R

are unknown functions, and a function
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V(x1,...,xn) 3 z → U(x1 + z, . . . , xn + z) (5)
is non-constant for at least one (x1, . . . , xn) ∈ D.
However, it is easy to check that [2, Theorem 4.3, p. 9]
remains true if, instead of the openness of D we assume
that, for every (x1, . . . , xn) ∈ D, the set V(x1,...,xn) is an
open interval. In order to formulate that result in such
a modified version, we need to introduce the following
notation. Let

T := {(x2 − x1, . . . , xn − x1)|(x1, . . . , xn) ∈ D}
and, for every (t1, . . . , tn−1) ∈ T ,

V (t1,...,tn−1)

:=
⋃

(x1,...,xn)∈D,(x2−x1,...,xn−x1)=(t1,...,tn−1)

V(x1,...,xn) .

Furthermore, given a function ψ : T → R, we set

Vψ 6=0 :=
⋃

(x1,...,xn)∈D,ψ(x2−x1,...,xn−x1)6=0

V(x1,...,xn) .

Theorem 1. Let D be a nonempty subset of Rn such
that, for every (x1, . . . , xn) ∈ D, V(x1,...,xn) is an open
interval. Assume that U : D → R, k, ` : VD → R and
a function given by (5) is non-constant for at least one
(x1, . . . , xn) ∈ D. Then a triple (U, k, `) satisfies Eq. (4)
for all (x1, . . . , xn) ∈ D and z ∈ V(x1,...,xn) if and only if
one of the subsequent two conditions holds:

(i) there exist a nonconstant additive function a : R→
R and a function ψ : T → R such that





k(z) = 1 for z ∈ VD

`(z) = a(z) for z ∈ VD

U(x1, . . . , xn) = ψ(x2 − x1, . . . , xn − x1)
+a(x1) for (x1, . . . , xn) ∈ D;

(ii) there exist a nonconstant exponential function e :
R → R, a constant c ∈ R and a not identically zero
function ψ : T → R such that

(673)
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k(z) = e(z) for z ∈ Vψ 6=0

`(z) = c(1− k(z)) for z ∈ VD

U(x1, . . . , xn) = e(x1)ψ(x2 − x1, . . . , xn − x1)
+c for (x1, . . . , xn) ∈ D.

The aim of the present paper is to complete the results
of [2] by determining all solutions of (4) such that a func-
tion given by (5) is constant for every (x1, . . . , xn) ∈ D.

2. Results

We begin this section with the following remark
Remark 1. Since, for every (x1, . . . , xn) ∈ D, V(x1,...,xn)

is an open interval containing 0, it is clear that, for every
(t1, . . . , tn−1) ∈ T , V (t1,...,tn−1) is also an open interval
containing 0. Moreover, for every (t1, . . . , tn−1) ∈ T ,
V (t1,...,tn−1) is symmetric with respect to 0. In fact, if z ∈
V (t1,...,tn−1) then z ∈ V(x1,...,xn) for some (x1, . . . , xn) ∈
D with (x2 − x1, . . . , xn − x1) = (t1, . . . , tn−1). Thus,
(x1 + z, . . . , xn + z) ∈ D, whence −z ∈ V(x1+z,...,xn+z).
As (x2+z−(x1+z), . . . , xn+z−(x1+z)) = (t1, . . . , tn−1),
this means that −z ∈ V (t1,...,tn−1).

The next theorem is a main result of the paper
Theorem 2. Let D be a nonempty subset of Rn such
that, for every (x1, . . . , xn) ∈ D, V(x1,...,xn) is an open
interval. Assume that U : D → R, k, ` : VD →
R and a function given by (5) is constant for every
(x1, . . . , xn) ∈ D. Then a triple (U, k, `) satisfies Eq. (4)
for all (x1, . . . , xn) ∈ D and z ∈ V(x1,...,xn) if and only if
there exist a constant d ∈ R and a function ψ : T → R
such that

ψ(t1, . . . , tn−1) = d

whenever V (t1,...,tn−1) \ k−1({1}) 6= ∅, (6)

`(z) = d(1− k(z)) for z ∈ VD (7)
and

U(x1, . . . , xn) = ψ(x2 − x1, . . . , xn − x1)

for (x1, . . . , xn) ∈ D . (8)
Prof: In order to prove that (8) holds with some

function ψ : T → R it is enough to show that, for every
(x1, . . . , xn), (y1, . . . , yn) ∈ D, the following implication
is valid:

(x2 − x1, . . . , xn − x1) = (y2 − y1, . . . , yn − y1)

=⇒ U(x1, . . . , xn) = U(y1, . . . , yn) .

To this end, fix (x1, . . . , xn), (y1, . . . , yn) ∈ D and sup-
pose that (x2 − x1, . . . , xn − x1) = (y2 − y1, . . . , yn − y1).
Then yj = xj + (y1 − x1) for j = 1, 2, . . . , n and so,
using the fact that a function given by (5) is constant
for (x1, . . . , xn), we get

U(y1, . . . , yn) = U(x1 + (y1 − x1), . . . , xn + (y1 − x1))

= U(x1, . . . , xn) .

Therefore, (8) is proved. Now, note that as a function
given by (5) is constant for every (x1, . . . , xn) ∈ D,

from (4) and (8) we derive that
`(z) = (1− k(z))ψ(x2 − x1, . . . , xn − x1)

for (x1, . . . , xn) ∈ D, z ∈ V (x2−x1,...,xn−x1). (9)
Thus, if k is identically 1, then ` is identically 0. Hence,
taking an arbitrary d ∈ R, we get the assertion. So,
assume that k is not identically 1. Put

V +
D := {z ∈ VD ∩ [0,∞)|k(z) 6= 1}

and
V −

D := {z ∈ VD ∩ (−∞, 0)|k(z) 6= 1} .

Clearly, at least one of the sets V +
D and V −

D is nonempty.
Assume that V +

D 6= ∅ and let z+
0 := inf V +

D . Let {z+
n } be

a sequence of elements of V +
D converging to z+

0 . Fix a
z ∈ V +

D and (x̃1, . . . , x̃n) ∈ D with z ∈ V(x̃1,...,x̃n). Since
z+
0 ≤ z and V(x̃1,...,x̃n) is an interval containing 0, for
sufficiently large n ∈ N, we have z+

n ∈ V(x̃1,...,x̃n). Then,
in view of (9), for sufficiently large n ∈ N, we obtain

`(z+
n ) = (1− k(z+

n ))ψ(x̃2 − x̃1, . . . , x̃n − x̃1) ,

whence

lim
n→∞

`(z+
n )

1− k(z+
n )

= ψ(x̃2 − x̃1, . . . , x̃n − x̃1) =: d .

Next, taking an arbitrary (x1, . . . , xn) ∈ D such that
V(x1,...,xn) ∩ V +

D 6= ∅ and arguing as previously, we get
that

d = lim
n→∞

`(z+
n )

1− k(z+
n )

= ψ(x2 − x1, . . . , xn − x1) .

In this way we have proved that there is a d ∈ R such
that

V(x1,...,xn) ∩ V +
D 6= ∅

=⇒ ψ(x2 − x1, . . . , xn − x1) = d . (10)
Analogously, one can prove that, if V −

D 6= ∅, then there
exists a d̃ ∈ R such that

V(x1,...,xn) ∩ V −
D 6= ∅

=⇒ ψ(x2 − x1, . . . , xn − x1) = d̃ . (11)
Now, in order to show (6) it remains to prove that if both
sets V +

D and V −
D are nonempty, then d = d̃. So, suppose

that V +
D 6= ∅ and V −

D 6= ∅. Let z−0 := sup V −
D and,

as previously, z+
0 := inf V +

D . Assume that z−0 ≥ −z+
0

(in the case where z−0 ≤ −z+
0 , the proof runs anal-

ogously). Then 0 ≤ z−0 + z+
0 ≤ z+

0 whence, taking
(x1, . . . , xn) ∈ D such that V(x1,...,xn) ∩ V +

D 6= ∅, we get
z−0 + z+

0 ∈ V(x1,...,xn) and so z−0 ∈ V(x1+z+
0 ,...,xn+z+

0 ).
Since V(x1+z+

0 ,...,xn+z+
0 ) is an open interval, this

means that V(x1+z+
0 ,...,xn+z+

0 ) ∩ V −
D 6= ∅. Thus,

by (11), ψ(x2 − x1, . . . , xn − x1) = d̃. On the
other hand, as V(x1,...,xn) ∩ V +

D 6= ∅, by (10), we get
ψ(x2 − x1, . . . , xn − x1) = d. Hence d = d̃ and so (6)
is proved. Finally, we show that (7) holds. Since k is
not identically 1, there is z0 ∈ VD with k(z0) 6= 1. Let



On a Class of Multiattribute Utility Functions Invariant . . . 675

(x0
1, . . . , x

0
n) ∈ D be such that z0 ∈ V (x0

2−x0
1,...,x0

n−x0
1).

Then V (x0
2−x0

1,...,x0
n−x0

1) \ k−1({1}) 6= ∅ and so, in view
of (6), we get ψ(x0

2−x0
1, . . . , x

0
n−x0

1) = d. Thus, making
use of (9), we conclude that

`(z) = d(1− k(z)) for z ∈ V (x0
2−x0

1,...,x0
n−x0

1). (12)
Now, let z ∈ VD be arbitrary and (x1, . . . , xn) ∈ D
be such that z ∈ V (x2−x1,...,xn−x1). According to
Remark 1, V (x0

2−x0
1,...,x0

n−x0
1) and V (x2−x1,...,xn−x1)

are intervals symmetric with respect to 0. Thus,
either V (x2−x1,...,xn−x1) ⊂ V (x0

2−x0
1,...,x0

n−x0
1) or

V (x0
2−x0

1,...,x0
n−x0

1) ⊂ V (x2−x1,...,xn−x1). In the first case,
in view of (12), we get `(z) = d(1− k(z)). In the second
one, we have V (x2−x1,...,xn−x1) \ k−1({1}) 6= ∅ which,
together with (6) and (9), gives again `(z) = d(1−k(z)).
Therefore (7) holds and the proof is completed.
Example 1. Let D = D1 ∪D2, where

D1 = {(x1, x2) ∈ R2|1 ≤ x2 − x1 < 2, 1 < x1 + x2 < 2}
and

D2 = {(x1, x2) ∈ R2|0 < x2 − x1 < 1, 1 < x1 + x2 < 3} .

Then, for every (x1, x2) ∈ D, the set V(x1,x2) is an open
interval. In fact, we have

V(x1,x2) =





(
1−(x1+x2)

2 , 2−(x1+x2)
2

)
for (x1, x2) ∈ D1(

1−(x1+x2)
2 , 3−(x1+x2)

2

)
for (x1, x2) ∈ D2 .

Thus VD = (−1, 1). Furthermore, we have T = (0, 2)
and

V t =

{
(−1, 1) for t ∈ (0, 1)
(− 1

2 , 1
2 ) for t ∈ [1, 2) .

Fix d ∈ R and ∆ ∈ [0,∞). Let k : (−1, 1) → R be an
arbitrary function such that k−1({1}) = [−∆,∆] and let
`(z) = d(1− k(z)) for z ∈ (−1, 1). Note that:

— if ∆ ≥ 1 then V t \k−1({1}) = ∅ for every t ∈ (0, 2);

— if ∆ ∈ [ 12 , 1) then V t \ k−1({1}) 6= ∅ for every
t ∈ (0, 1);

— if ∆ ∈ [0, 1
2 ) then V t \ k−1({1}) 6= ∅ for every

t ∈ (0, 2).

Therefore, applying Theorem 2, we conclude that a triple
(k, `, U), where U : D → R, satisfies (4) if and only if

U(x1, x2) = ψ(x2 − x1) for (x1, x2) ∈ D ,

where ψ : (0, 2) → R is such that:

a) ψ|(0,1) ≡ d in the case where ∆ ∈ [ 12 , 1);

b) ψ ≡ d in the case where ∆ ∈ [0, 1
2 ).

3. Conclusion

In several cases, the initial wealth of the decision maker
is in the form of annuity payment which pays an amount
z at every period for n successive periods. In such
cases, a multiattribute utility function is invariant under
shift transformation, provided Eq. (2) holds with some
functions k and `. This equation has been considered
in [2] under the assumption that a function given by (5)
is non-constant for at least one (x1, . . . , xn) ∈ D. In
the present paper we complete the results in [2] by de-
termining the functional form of utility function in the
case where a function given by (5) is constant for every
(x1, . . . , xn) ∈ D.
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