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Simple model of share price evolution, which is an extension of Kehr–Kutner–Binder one and Montero–

Masoliver models, is presented. The market empirical data inspired the assumptions of the model. The model
seems to be the reference one for the study of the short-range correlations in financial data as it considers the
observed correlation over two successive jumps of the financial ant.
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1. Introduction

Since the time when Continuous–Time Random Walk
(CTRW) was introduced by Montroll and Weiss [1] and
Scher and Lax [2], the list of its applications, e.g., trans-
port in disordered media, electron tunneling, modeling of
hydrological problems as well as earthquake, is still grow-
ing up. Recently, its application to description of finan-
cial time-series was proposed [3–12]. In the traditional
CTRW, times duration and jumps are independent ran-
dom variables and in the most of cases their distribution
are static. In financial time-series, such as single share
price, strong correlations between successive jumps have
been observed [13], i.e., the independence of successive
jumps is violated. In the literature [14–16] the CTRW
assuming the successive jumps dependence was analyzed,
where particles jumping on a lattice strongly favorize
backward jumps instead of forward ones. Montero and
Masoliver [17] proposed analogous simple solvable model
of the CTRW in the context of financial data. In this
paper we extended the Montero and Masoliver model to
cover both stationary and non-stationary systems.

2. Empirical basis of our model

Strong correlations between relative directions of two
successive jumps of the stock price was already discussed
in the literature [13]. After increase of the price, its suc-
cessive decrease in the next transaction is about three
times more probable than its successive increase, and
vice versa. We analyzed tick by tick KGHM∗∗ stock data
since 2000-11-17 till 2009-02-11 [18] and we found (af-
ter removing transactions without price changes) that
probabilities of positive and negative backward jumps of
price equals about 0.76 (with negligible small statisti-
cal error). Our observations confirm the result presented
in [13], which was based on empirical data collected more
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∗∗ KGHM — KGHM Polska Miedź S.A., the mining and metallurgy
company based in Poland in Lubin. It is one of the biggest
companies at Warsaw Stock Exchange.

than one decade ago. Right now, it is clear that empiri-
cal observation constitutes basis for theoretical modeling.
Moreover we checked if other correlations are so impor-
tant as previously mentioned ones. In Fig. 1 we presented
histograms that shows strong correlations in the former
case and negligible ones in latter cases.

3. Solution of the model

The single trajectory of the financial ant, realized
within our CTRW, is a stair-like curve, which consists
of waits and jumps. To define the underlying process
(t1, r1; t2, r2; . . . ; tn, rn), where tj means the waiting-
-time and rj is the jump of the price (j = 1, 2, . . . , n), the
following conditional probability should be introduced.
Namely,

• ρ(rn, tn|rn−1, tn−1; rn−2, tn−2; . . . ; r2, t2; r1, t1) —
is the probability that the jump of the price,
rn, occurred exactly at the end of the wait-
ing time tn conditioned on the trajectory
(t1, r1; t2, r2; . . . ; tn−1, rn−1).

We postulate that the following approximation will be
appropriate for analyzed case,

ρ(rn, tn|rn−1, tn−1; rn−2, tn−2; . . . ; r2, t2; r1, t1)

≈ ρ(rn, tn|rn−1) ≈ h(rn|rn−1)ψ(tn) . (1)
Additionally, we assume that our process is stationary.
Now we need the propagators

• Q(X, t|ξ) — probability that financial ant, which
was initially (t = 0) at origin (X = 0) arriving
there by making a jump ξ, exactly at time t jumps
to position X. We call it the ’sharp probability’
and consider it only for t > 0.

• P (X, t|ξ) — probability that financial ant, which
was initially (t = 0) at origin (X = 0) arriving there
by making a jump ξ, at time t is at position X. We
call it the ’soft probability’.
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Fig. 1. Analysis of independence between (a) jump rn and previous jump rn−1, (b) jump rn and second previous jump
rn−2, (c) jump rn and time interval between jumps tn. Z-axis shows a decimal logarithm of the number of counts
(increased by one). Jumps lengths are rounded to 0.1 and given in Polish national currency PLN. Time scale is in
seconds. Histograms are based on tick by tick KGHM stock data since 2000–11-17 till 2009-02-11 [18]. Histograms
(a) shows important correlation between quantities, correlations on histograms (b) and (c) can be neglected in our
theoretical approach.

The difference between sharp and soft probabilities is
that for the soft one, the ant can arrive to the place
earlier and stay there (without jump) till time t. In [17]
the above mentioned quantities have similar definitions
thought small but essential difference exist as there the
financial ant arrives to X = 0 exactly at time t = 0.
This makes P (X, t|ξ) non-stationary, in opposite to our
stationary case.

The solution of the problem becomes much easier if we
use Laplace and Fourier transforms

P̃ (k, s|ξ) =
∫ ∞

0

dte−st

∫ ∞

−∞
dxe ikxP (x, t|ξ) ;

analogically we obtain the Q̃(k, s|ξ) quantity. In the ap-
proach we decompose

Q (X, t|ξ) =
∞∑

n=1

Qn (X, t|ξ) ,

where Qn(X, t|ξ) is the analogous quantity as Q(X, t|ξ)
possessing the additional condition that during time t
exactly n jumps were made. The component Q0 doesn’t
appear in summarized quantity Q as we consider only
t > 0. Following [17] we assume the conditional jump
distribution in the form.

h(rn|rn−1) = h(rn)
(
1 + ε sgn(rn)sgn(rn−1)

)
, (2)

where h(rn) is unconditional distribution of jumps, which
is assumed to be symmetric h(rn) = h(−rn).

Now let us separate Q̃n(k, s|ξ) into two parts:
Q̃+

n (k, s|ξ) — obeying an additional condition that the
last jump was positive, and analogously Q̃−n (k, s|ξ),
where the last jump was negative. For simpler notation
we define half-Fourier transformation

H̃(k) =
∫ ∞

0

dre ikrh(r) , h̃(k) = H̃(k) + H̃(−k) .(3)

We can write recurrent equations for Q̃+
n , Q̃−n , respec-

tively expressed in the matrix form (for n ≥ 2)(
Q̃+

n (k, s|ξ)
Q̃−

n (k, s|ξ)

)
= ψ̃(s)

(
H̃(k)(1 + ε) H̃(k)(1− ε)

H̃(−k)(1− ε) H̃(−k)(1 + ε)

)

×
(

Q̃+
n−1(k, s|ξ)

Q̃−n−1(k, s|ξ)

)
. (4)

Now, let us summarize both sides of Eq. (4) over n and
add the postulated form of Q̃±

1 (k, s|ξ)(
Q̃+(k, s|ξ)
Q̃−(k, s|ξ)

)
= ψ̃(s)

(
H̃(k)(1 + ε) H̃(k)(1− ε)

H̃(−k)(1− ε) H̃(−k)(1 + ε)

)

×
(

Q̃+(k, s|ξ)
Q̃−(k, s|ξ)

)
+ ψ̃1(s)

(
H̃(k)

H̃(−k)

)
. (5)
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Note that, for the first jump we cannot use the same wait-
ing time distribution as for other ones, because previous
jump might have occurred at any time before t = 0. In
such case we have to average over all possible times of
the previous jump. Following [13], we assume

ψ1(t) =

∫∞
0

dt′ψ(t + t′)∫∞
0

dt′′
∫∞
0

dt′ψ(t′′ + t′)
. (6)

The only case when ψ1(t) = ψ(t) is an exponential dis-
tribution. The Laplace transform ψ̃1(s) of (6) can be
expressed by the transform of the original waiting time
distribution

ψ̃1(s) =
1− ψ̃(s)
〈t〉s , (7)

where 〈t〉 =
∫∞
0

tψ(t)dt. The final form of the stationary
propagator, including averaging over sign of ξ, is given
by

P̃ (k, s) = Ψ̃(s)
(
Q̃+(k, s|ξ) + Q̃−(k, s|ξ)

)
+ Ψ̃1(s)

=
[
1− εh̃(k)ψ̃(s) +

(
ψ̃1(s)− ψ̃(s)

)

×
(
h̃(k)− 4εH̃(k)H̃(−k)ψ̃(s)

) ]

/[
1− h̃(k)(1 + ε)ψ̃(s) + 4εH̃(k)H̃(−k)ψ̃(s)2Ψ̃(s)

]

+
(
Ψ̃1(s)− Ψ̃(s)

)
. (8)

By using this explicit form we can calculate the Laplace
transformation of the variance of the process

m̃2(s) = − ∂2P̃ (k, s)
∂k2

∣∣∣∣∣
k=0

=
µ2ψ̃1(s)

s(1− ψ̃(s))

+
2εµ2

1ψ̃(s)ψ̃1(s)
s(1− ψ̃(s))(1− εψ̃(s))

, (9)

where

µ1 =
∫ ∞

−∞
dx |x|h(x), µ2 =

∫ ∞

−∞
dxx2 h(x) . (10)

Technically, to obtain the result for the non-stationary
case it is sufficient to put ψ̃(s) instead of ψ̃1(s). Hence,
Eqs. (8) and (9) reproduce the corresponding results
shown in [17]. We derive variance in the time domain
in the form

m2(t) =
µ2

〈t〉 t +
2εµ2

1

〈t〉 L
−1

{
ψ̃(s)

s2(1− εψ̃(s))

}
(t) , (11)

where L−1 denotes inverse Laplace transform. As we
can see, as long as mean time 〈t〉 exists, there is no
matter which is the ψ(t) and ε, the asymptotic behav-
ior of the variance is diffusive with diffusion coefficient
D = µ2/(2〈t〉). Additionally, for stationary process we
obtain velocity autocorrelation function in the form

C(t) =
µ2

2〈t〉δ(t) +
εµ2

1

〈t〉 L
−1

{
ψ̃(s)

1− εψ̃(s)

}
(t) . (12)

The difference between stationary and non-stationary
cases is important for small and intermediate times and
it disappears for exponential waiting time distribution
ψ(t). To visualize the difference between results in those
two cases let us consider waiting time distribution in the
form of two-step Poisson process.

ψ(t) = λ2t exp(−λt) . (13)
The difference between stationary variance (obtained
from Eq. (11) and its non-stationary analog (shown
in [17]), for waiting time distribution given by Eq. (13)
takes the form

∆m2(t) =
{

e−λt
[ (

2εµ2
1 − εµ2 + µ2

)
sinh(λt)

−2
√

εµ2
1 sinh

(√
ελt

) ]}/[
2(1− ε)

]
. (14)

In Fig. 2 two different examples of the difference between
stationary and non-stationary variances are plotted for
the case of negative (Fig. 2a) and positive (Fig. 2b) ε.

Fig. 2. Difference between stationary and non-
-stationary variances given by Eq. (14), for λ = 1,
µ1 = 1, µ2 = 2. In both cases (negative and positive ε)
difference tends to the constant, what reflects the
fact that both variances are asymptotically diffusive,
and the difference is important only for small and
intermediate times.

4. Conclusions

In this work we presented:

• The approach inspired directly by empirical facts,
which is important for the study of the short-range
correlations, i.e., for short and intermediate times.
This was recognized by comparison of the mean-
-square displacement (variances) for the stationary
and non-stationary cases.

• By using Wiener–Khinchine formula (valid only for
the stationary situations) we also found the formula
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for the velocity (or price increments) autocorrela-
tion function.

• The achievement of our work is that we found im-
portant analytical formulas in a closed form.
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