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Presence of self-similar patterns in the financial dynamics is by now well established and even convincingly
quantified within the multifractal formalism. Here we focus attention on one particular aspect of this self-similarity
which potentially is related to the discrete-scale invariance underlying the system composition and manifests itself
by the log-periodic oscillations cascading self-similarly through various time scales. Such oscillations accumulate
at the turning (critical) points that in the financial dynamics are often identified as crashes. This property thus
allows us to develop a methodology that may be useful also for prediction. A model Weierstrass-type function is
used to illustrate the relevant effects and several examples demonstrating that such effects in the real financial
markets take place indeed, are reviewed.
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1. Introduction

Fractality is a concept that pervades all the science.
The famous question “How long is the coast of Britain” [1]
becomes well-founded and an answer quantifiable within
the fractal formalism of fractal dimensions. Many other
static objects as well as the dynamical processes that Na-
ture is abundant with fall into the same category [2]. The
same applies to the parameters representing dynamics of
the financial assets. The length of the graph represent-
ing the price changes increases with increasing the time
resolution with no signal for its convergence to any finite
number and — for a sufficiently liquid market — such a
graph remains “rough” at any such scale. This property
of the financial graphs can visually be well illustrated by
the Weierstrass-type function [3, 4]

f(t) =
∞∑

n=0

1
λ(2−D)n

exp (−λnt cos(γ)) cos (λnt sin(γ)) ,(1)

where λ and γ ∈ [0, π/2] are parameters that fix its
structure. For γ = π/2 the function develops a frac-
tal structure and the parameter D corresponds to the
fractal dimension of this function. It then has the re-
markable property of being continuous but nowhere dif-
ferentiable. An example of such a function for D = 1.4
and λ = 2, with the summation truncated at n = 50, is
shown in Fig. 1. As the two successive steps of magnifica-
tion clearly illustrate, this function exhibits the property
of self-similarity.

2. Fractal log-periodicity

It is even more interesting to see that this self-
-similarity involves a very special pattern. The intervals
between the subsequent most pronounced peaks at one
particular i-th level of magnification get contracted by

Fig. 1. The Weierstrass-type function of Eq. (1) for
γ = π/2, D = 1.4 and λ = 2. The sum in Eq. (1) has
been truncated at N = 50 because the function does not
change significantly beyond this value of N . Two con-
secutive levels of magnification are also shown in order
to demonstrate its self-similar character. The symbols
T

(i)
ni mark the maksima at the i-th level of magnification.

the same constant factor λ > 1 according to

T
(i)
ni+1 − T

(i)
ni

T
(i)
ni − T

(i)
ni−1

=
1
λ

. (2)

These intervals thus form a geometric progression whose
all terms can be summed up to infinity thus determining
the accumulation point Tc. In fact, any pronounced peak
at T

(i)
ni for a fixed i-th level of magnification can be con-

sidered such an accumulation point Tc as it is proceeded
by an infinite sequence of analogous peaks T

(i+1)
ni+1 that

constitute its counterparts at the deeper (i + 1)-th level
of magnification and fulfil the following relation:

(637)
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. (3)

This relation thus sets a strict correspondence between
the turning points — in the graph seen as cusps — and
the locations of the three consecutive such points de-
termine position of the next and thus, by iteration, the
structure of the whole hierarchy at all scales.

In simple and smooth terms the essential elements —
in Fig. 1 indicated by the thin solid lines — of the basic
pattern of this structure at any particular level of mag-
nification can be represented by a function φ(T ) of the
type

φ(T ) = A + B|Tc − T |α

+ C|Tc − T |α| cos(ω ln |Tc − T | − ϕ)| , (4)
where A, B, and C are constants, α < 0 and ω =
2π/ ln(λ). The dominant power-law behaviour, a hall-
mark of all critical phenomena, and the log-periodic cor-
rections to the leading term are the main features of this
function.

The Weierstrass-type function turns out a particular
solution of the discrete renormalization group equation
for critical phenomena [4, 5]. This fact — in view of the
suggestion that the financial markets may be governed
by phenomena analogous to criticality in the statistical
physics sense [5] — as well as abundance of the cups-like
shapes in the financial dynamics justifies searching for
parallels. Indeed, as it is shown in Fig. 2 which presents
the time evolution of the German stock index DAX over
the period of approximately first ten months in 1998 ver-
sus the best fit in terms of Eq. (4), the main features are
amazingly similar. Even more, it is remarkable in this
example that imprints of the contraction of oscillations
in the spirit of Eq. (2) and thus also of Eq. (3) in the real
market may cascade self-similarly through several time
scales [6], resembling the model Weierstrass-type func-
tion. The most relevant — as it fixes the ratio of the
contraction of oscillations — parameter, which is λ, here
equals 2.

3. Financial markets

The real financial dynamics is typically much more in-
volved than just the model Weierstrass function or even
than the selected DAX case shown in Fig. 2. Never-
theless, even in a much more complex evolution of the
financial patterns one almost always finds components
that can be well represented by Eq. (4) at several levels
of the time resolution. In Fig. 3 the S&P500 development
over a very interesting and rich in diversity of different
market phases time period of years 2000–2009 versus its
optimal interpretation in terms of the basic formula pre-
scribed by Eq. (4) is illustrated. Indeed, both variants,
accelerating T < Tc as well as decelerating T > Tc of
this formula can be here recognized to properly reflect

Fig. 2. Time evolution of the German DAX index over
the period of approximately first ten months in 1998
together with the best logperiodic fit in three levels of
magnification.

the oscillation structure and the accumulation of oscilla-
tions always coincides with the trend reversal. Further-
more, irrespective of the time scale at which it operates,
the optimal value of the contraction parameter is λ = 2,
both in the bull and in the bear market phase.

Fig. 3. The 2000 — present history of the S&P500 in-
dex interpreted in terms of the optimal log-periodic rep-
resentations for different phases of its development.

A particularly appealing aspect of the patterns de-
scribed above is that they carry a potential for predic-
tion. Suppose that during an increase a three consecutive
repetitive structures, either minima or maxima, labeled
as T

(i)
ni , T

(i)
ni+1, and T

(i)
ni+2, respectively, are identified on

a particular i-th level of the time resolution. Then ap-
plying procedure analogous to Eq. (3), or its equivalent
expressed by Eq. (4), the corresponding Tc which marks
termination of this increasing phase can be evaluated in
advance. In view of an unavoidable frequent imprecision
in identifying such repetitive structures in the real mar-
ket dynamics the further constraints are put on such a
procedure the more reliable it can be made. One cru-
cial related element is an original postulate [6] that for
the stock markets the contraction factor λ ≈ 2 and is
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the same for all the time scales. Later on this postulate
was further verified and confirmed [7, 8] for several world
leading stock markets. More recent studies based on the
precious metal market [9] and on the oil market [10] allow
one to extend this universality aspect of the parameter
λ also to the commodity market. These last two cases
were in addition associated with the real predictions as
documented in the corresponding references. This fact of
course even strengthens the above indication concerning
such a specific value of the parameter λ.

Especially spectacular was the precision of prediction
[10] of the oil price reversal that occurred on July 11,
2008, exactly as predicted [10]. Figure 4 shows the
oil price development over the time period June 2007–
December 2008 and thus extends somewhat longer than
the corresponding Fig. 2 of Ref. [10]. This extension even
better documents a highly speculative character of the oil
price dynamics. Since June 11, 2008 until the end of the
same year the oil price dropped down by a factor of three
and this drawdown was accompanied by the decelerating
log-periodic oscillations and, as also indicated in Fig. 4,
even a smaller time-scale substructure in the end of this
declining phase emerged. Of course, the theoretical rep-
resentation in terms of Eq. (4) corresponds to λ = 2 on
both sides of the transition point which provides another
argument in favor of the universality of this parameter
value.

Fig. 4. Temporal evolution of the brent crude oil price
over the period June 2007–December 2008 with the best-
-fitted logperiodic functions modeling the bull and the
bear phases.

From the longer time-perspective the current oil price
dynamics can be viewed as it is shown in Fig. 5. This
way of interpretation was postulated already in Ref. [10]
and is based on a phenomenon that is termed a “super-
bubble" [7]. Accordingly, the oil bubble that did burst
on July 11, 2008 was a bubble built on top (therefore
a “superbubble") of a longer term bubble that is still in
action. The fact that after the decline the oil price re-
turned to the level consistent with the long term trend
indicates that such an interpretation makes a lot of sense.
A systematic elevation of the oil price, decorated by the
log-periodic oscillations within the tunnel as sketched in
Fig. 5, is thus likely to last until almost the end of 2010.

Fig. 5. Long-term temporal evolution of the brent
crude oil price over the years 2002–2009 and the pos-
sible long-term logperiodic trends culminating on 5 Dec
2010.

4. Conclusions

In our paper we have shown that the evolution of stock
indices can be described by a self similar structure of log-
-periodic oscillations on different levels of temporal res-
olution. This cascade of log-periodic patterns resembles
the structure of the Weierstrass function, in which the os-
cillations accelerate forming an infinite sequence of cusps
that converge to a local accumulation point, which in
turn is one of the serial cusps in the higher-level conver-
gent sequence. As the presented example of the oil price
shows, the identification of an accelerating or decelerat-
ing oscillating patterns in the data has also a strong fore-
casting potential. We have also stressed the possibility
that the contracting factor λ ≈ 2 can be universal.
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