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Singular Dynamics of Various Macroeconomic Sectors
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In this work we applied our original solution of the literal Rheological Model of Fractional Dynamics of
Financial Market, i.e., the time-dependent solution proportional to the Mittag–Leffler function superposed with
oscillations, not only to describe the singular dynamics of financial markets but also to study the singular dynamics
of various macroeconomic sectors. The approach makes possible to sufficiently estimate (among others) the time
of crash as well as its order. Thus we demonstrate, perhaps useful for stock market investors as well as for various
macroeconomic agents, the technical analysis of bubble and crash, which is complementary to the famous one
supplying power-law superposed with log-periodic oscillations.

PACS numbers: 89.20.−a, 89.65.−s, 89.90.+n

1. Introduction

This work is supplementary to our recent ones [1, 2] as
we applied here our rheological model of fractional dy-
namics of financial market (RMFDFM) to well describe

• dynamics of gross domestic products of leading
countries as well as

• some bubbles as well as the crash present on houses
and parcels’ market in United States, also bubbles
and crashes

• on oil market and

• some stock markets,

i.e. to well describe the singular dynamics of quite dif-
ferent macroeconomic sectors.

The bubbles and crashes play a key role for capital-
istic, competitive free markets [3–5] and they are their
unavoidable phenomena. Therefore bubbles and crashes
are the natural subject of thorough and widespreaded
studies of economists, sociologists, psychologists and re-
cently, econo- and sociophysicists.

The most fruitful seems to be the concept of the dis-
crete scale invariance applied to stock markets and con-
sidering their crashes as a kind of criticality. As a
consequence the dynamics of the market within the re-
gion preceeding a crash can be described by scale-free
laws containing logarithmic periodicities [6–16] (and refs.
therein). The major achievement of the approach con-
tains, so much characteristic and useful for investors, the
pecursor of a crash time.

The solution supplied by our RMFDFM is complemen-
tary to the power-law superposed with log-periodic oscil-
lations. We applied it here to describe several empirical

time series proceeding a crash, which cannot be success-
fully handled by the latter approach.

1.1. Non-exponential relaxation

The non-exponential (non-Debye) relaxation may arise
from the non-Markovian type of underlying processes,
i.e. from the memory effects. It was shown that frac-
tional calculus is indeed quite natural way of incorporat-
ing memory effects [17, 18]. Hence fractional relaxation
equation, ruled by power-law kernel, presents a long-term
memory. The solution that plays a dominating role in
fractional relaxation problems is the Mittag–Leffler (ML)
function [18]
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which is a straightforward generalisation of the exponen-
tial one (obtained for α = 1) and complementary to the
Tsallis q-exponent [19] (here t is time and tc is the local-
ization of the turning point from raising to falling parts
of the ML function while α is the shape exponent). The
ML function allows interpolation [18, 20] between the cor-
responding stretched exponential function for the short-
-time limit and power-law decay for the asymptotic time
(if shape exponent is smaller than 1). The former plays
a crucial role in our analysis making possible to define
(the analogy of) phase transitions of arbitrary orders.

1.2. Solution supplied by rheological model
of the fractional dynamics of financial market

Modern rheology explains various aspects of the non-
-Debye relaxation of viscoelastic materials [20–38] mainly
by using different versions of the fractional solid model
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(FSM) (named also the fractional Zener model or frac-
tional standard linear solid). They are based on the so-
-called fractional elements (FEs) defined by different me-
chanical arrangements of constitutive elements such as
springs (i.e. elastic elements) and dashpots (i.e. friction
ones). These arrangements form particular ladders, trees
and fractal networks (cf. corresponding figures in [21]
and refs. therein), which in the limit of infinite number
of constitutive elements are physical realizations of the
simplest fractional constitutive differential equation (i.e.
Eq. (66) in [21]) being an interpolation between Hooke’s
and Newton’s laws.

Each FE is characterized by its own sequence of spring
constants and viscosities, while given arrangement of FEs
defines already the rheological (macroscopic) properties
of a solid or plastic material; however, several different
arrangements can define the same properties∗. Different
versions of fractional solid models were defined by the
corresponding fractional rheological constitutive equa-
tions (FRCEs), where fractional derivatives properly re-
placed the ordinary ones, hence FRCEs establish corre-
sponding, time-dependent stress–strain relations.

Our RMFDFM (being a reinterpretation of the FSM,
see Table I) consider spring-dashpot pair as an analog of a
single trader (investor or agent), where spring symbolizes
trader’s activity and dashpot his aversion to risk†.

TABLE I
Correspondence between stock market quantities
and the Zener model ones.

Stock market Zener model
stock market index strain
excess demand stress
volume of trade temporal temperature

return per unit time linear coefficient of expansion

In other words, the spring represents a purely emo-
tional or irrational investor’s behaviour (an undamped
activity) while the dashpot defines a purely rational one
(fear or aversion to risk). If spring is stretched, it means
that investor ordered stocks; if it is contracted, then
stocks were put up for sale, otherwise (when spring leaves
unchanged) the trader is doing nothing. Let us note
that the dashpot always acts against any trader’s ac-
tivity due to the friction or aversion to any risk. Like
in the FSM, the constitutive mechanic elements (springs
and dashpots) were replaced here by corresponding FEs.
Hence, an arrangement of spring–dashpot pairs defines

∗ In the context of the stock market this means that we have to
deal with multifurcation of invested capital structure which, e.g.
depends on different strategies assumed by investors.

† This definition of trader does not exclude pathological possibil-
ities that only the spring or only the dashpot represents some
trader.

a network of investors, which forms a social cooperative
structure for a given stock market. The model is related
to field called behavioural finance since it somehow in-
corporates the psychological motivation of investor’s be-
haviour. Moreover, it relates to the field called agent-
-based modelling of economic and social systems [39].

Saying something else, the transtion from the Zener
model to its fractional counterpart means that both
springs and dashpots were properly replaced by fractional
elements: two of them are connected in series (called frac-
tional Maxwell element) and it is (as a whole combined
element) parallel to the third FE. Thus, we have to deal
with three groups of cooperative investors, which is a
reminiscence of an income distribution in society, where
(roughly speaking) three essentially different prosperity
groups were discovered [40–43]. Nevertheless, it is still
a challenge to choose arrangements, which properly map
microscopic cooperative structures of stock markets.

The literal RMFDFM deals with well-defined spec-
ulative peaks (consisting of hossa and bessa paths),
where dominating behaviour of stock market results from
traders’ activities whose strategies are based only on a
direct (on-line) observations of the market state. They
are conducting a technical analysis of dynamics of stock
market indices and the volume of the corresponding as-
sets and undertake decision. They are called technical
traders, chartists or noise traders. Of course, traders can
mutually communicate (e.g. by using phones) exchanging
informations.

To compare prediction of our model with different em-
pirical data it is sufficient to use only the real part of the
exact solution X(t) of the initial-value problem for our
FRCE up to the lowest order terms in the exact solution
(cf. Appendix A in [1]), i.e. it is suficient to use only the
following approximate expression:

<X(| t− tc |) ≈ (X0 + X1)Eα

(
−

( | t− tc |
τ

)α)

−X1 cos(ω | t− tc |) cos(∆ω | t− tc |) , (1.2)
where terms proportional to ω as well as to ∆ω were ne-
glected, since for empirical data considered in this work
the frequencies obey self-consistently ω, ∆ω ¿ 1 (if ad-
ditionally ∆ω ¿ ω we have to deal with a beat) and
all coefficients and parameters are real; the initial value
X0

def.= X(0) and parameter X1 are the calibrating pa-
rameters whose values were found in the next section to
be much larger than unity. By comparison predictions
of expression (1.2) with empirical data we can say more
about the bubble and crash dynamics (or the singular
one).

1.2.1. Long-term dynamics of gross domestic products

Before we go to financial markets, we pay our atten-
tion to Figs. 1 and 2 were we presented gross domes-
tic products (GDPs) of so different countries as United
States and China, respectively. It is seen that both set of
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empirical data (dots)‡ are well described by the Mittag–
Leffler function with almost the same shape exponents
(which only very little exceed 1) but very different relax-
ation times (cf. Table II). However, even this little differ-
ence (of shape exponens from a natural number) makes
the crash of GDP (here of the second order) possible§.
Moreover, it is amazing that both dynamics of GDPs
are practically the same differing only by the relaxation
times (see Table II for comparison). Let us note that the
crashes of the USA and China GDPs were predicted here
for a distant future namely, for 2096± 33 and 2037± 10,
respectively; both dates were obtained from very simple
relation 2006+(tc−tmax), where tmax = 142 [ty] or 73 [ty],
respectively, are the last data points after the shrink of
empirical time series.

Fig. 1. The long-term U.S. gross domestic product
since 1820 till 2006 normalized to 1990: (i) dots are
empirical data and (ii) the solid curve is the fit given
by the Mittag–Leffler function (1.1), where shape expo-
nent α only slightly exceeds 1 (see Table II). Time t is
measured here in trading years (ty) and empirical data
were shrunk discarding the missing trading years (as it
mainly concerns the beginning of the empirical data set,
it has a minor influence on the fit). The maximal value
of empirical data is placed at t = tmax = 142.

1.2.2. Dynamics of houses and parcels’ market
Next, we pay our attention to very interesting exam-

ple of the dynamics of houses and parcels’ market in
United States between January 1963 and December 2008;
the corresponding empirical data (in log–log scale) were
shown in Fig. 3. It is clear that the whole data’s range is
naturally divided into two regions characterized by two
essentially different power-laws:

(i) the first region (having slope equal to 0.076±0.015),
since January’63 untill 1970¶ when Federal Home
Loan Mortgage Corporation (HLMC, known as

‡ The empirical data were downloaded from the internet address
http://www.ggdc.net/Maddison/Historical_Statistics .

§ Note that only α exactly equal to a natural number gives no
crash, but this is the marginal case.

¶ This date is placed in Fig. 3 near the turning point where em-
pirical data changes its slope in log–log scale from low to high
value.

Fig. 2. The long-term gross domestic product of China
since 1820 till 2006 normalized to 1990: (i) dots are
as usual the empirical data and (ii) the solid curve
is the fit given by the Mittag–Leffler function (1.1),
where again shape exponent α slightly exceeds 1 (see
Table II). Time t is also measured here in trading years
(ty) and empirical data were shrunk discarding the miss-
ing trading years (as it mainly concerns the beginning
of the empirical data set, it has a minor influence on the
fit). The maximal value of empirical data is placed at
t = tmax = 73.

TABLE II
Values of parameters found by the fit.

Country α τ [ty] tc [ty] R2

USA 1.04± 0.03 40± 5 232± 33 0.9987

China 1.05± 0.03 16± 1 104± 10 0.9956

Freddie Mac) was created to expand the secondary
market for mortgages, and

(ii) the second one after the 1970 (having slope equal
to 1.391± 0.015).

Note the Freddie Mac is the United States federal
government-sponsored enterprise which deals with mort-
gage lenders to support them get optimal access to house
financing. Since 1970, Freddie Mac has systematically ex-
tended its activity beginning from rich society class over
middle to poor ones creating a kind of mortgage lenders’
hierarchy.

Besides Freddie Mac, there is also complementary en-
terprise Federal National Mortgage Association (FNMA,
commonly known as Fannie Mae) sponsored by govern-
ment since 1968. Its corporation’s purpose is to purchase
and securitize mortgages in order to ensure that funds are
consistently available to the institutions that lend money
to house buyers. Both enterprises play together the de-
cisive role on a mortgage market.

In fact, we commence our analysis of empirical data by
dividing them into three independent ranges according
to, well-seen in the scale of Fig. 3, the fine structure of
price dynamics and by beginning the first range since
April 1973 (cf. Fig. 6). As we will see, although full data
range can be fitted by a single power-law, each range
separately is well-fitted by the Mittag–Leffler function
(cf. solid curves in Figs. 4–6).
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Fig. 3. The median, S, of houses and parcels’s prices
sold in U.S. between January 1963 and December 2008
shown in log–log scale (the unit of timescale is cho-
sen here as one trading month). The empirical data
(marked by dots) were downloaded from the internet
address http://www.economagic.com/ .

Fig. 4. The median, S, of prices of houses and
parcels sold in US between January 1988 and De-
cember 2008 (the unit of timescale is chosen here as
one trading month). The empirical data (marked
by dots) were downloaded from the internet address
http://www.economagic.com/ (solid curves were de-
fined in the main text).

As it is seen, in Fig. 4 the empirical data proceeded
from the market of houses and parcels is well fitted by
the Mittag–Leffler function (1.1) (the best fitted curve)
even near the turning point (i.e. the point where hossa
changes to bessa). The values of parameters of ML func-
tion obtained here are as follows: the localization of the
theoretical turning point (the maximum) is at tc = 231
months, i.e. at March’07, which is placed exactly at the
maximum of empirical data, the relaxation time τ = 95
months, the shape parameter α = 0.60∗∗.

Let us note that for α < 1 both derivatives (i.e. left-
and right-sided) of the ML function diverges at tc ac-
cording to the power-law, which means that return also
accordingly diverges [2]. Hence, at tc we deal with anal-
ogy of the first order phase transition. The correspond-
ing predictions of exponential function (the highest lying
curve in the vicinity of the top) and stretched exponen-

∗∗ All values of fittted parameters shown in this paragraph are bur-
dened by the order of 10% errors.

Fig. 5. The median, S, of prices of sold houses and
parcels in US from March 1979 untill November 1988.
The solid curve shows the prediction of the ML function
for α = 0.62, τ = 76 months and its maximum tc is
placed at March 1988.

Fig. 6. The median, S, of prices of sold houses and
parcels in USA from April 1973 untill March 1979. The
solid curve shows the prediction of the ML function for
α = 0.65, τ = 30 months and its maximum tc is placed
at February 1979.

tial one (the lowest lying curve) were also shown there
for comparison††.

In Figs. 5 and 6 good agreement between predictions
of ML function and empirical data for both earlier time-
-ranges were also obtained.

The observation that the Mittag–Leffler function so
well fits empirical data means that the (analogy of) phase
transition or crash is potentially included in the market
of houses and parcels in US. Whether crash really will
appear depends on how far the market reaches the scaling
(crash) region.

Quite often the ML function appears both in the
stochastic and deterministic modelling of disordered sys-
tems. The canonical example of the former may be the
continuous-time random walk model (CTRW) used in the
context of a financial market [31–46], while the latter —
already mentioned above fractional relaxation equation,
describes relaxation of viscoelastic materials.

†† For both exponential and stretched exponential functions relax-
ation time is given here by τ [Γ (1 + α)]1/α = 79 months.



634 M. Kozłowska, R. Kutner

1.2.3. Mittag–Leffler function superposed
with oscillations on the oil market

Another, very prominent example of application of the
RMFDFM’s solution (1.2) is the crash on the oil market
in June 2008 (cf. Fig. 7); the theoretical crash point tc

TABLE III
Fit parameters describing the recent,
largest peak of the oil price. The fit ac-
curacy R2 = 0.9931.

tc τ α ω ∆ω

124.1 17.2 0.89 0.0215 0.0738
± 0.6 ± 0.5 ± 0.01 ± 0.0004 ± 0.0010

TABLE IV
Calibrating fit parameters concerning
the oil market crash on June 2008.

X0 + X1 [p] X1 [p]

153.4± 6.2 −25.5± 2.1

Fig. 7. Oil price peak in “USD per barrel” (marked by
dots) extended from April 1998 till April 2009 (which
cover 133 empirical data points; the unit of timescale
is chosen here as one trading month) while the crash
point (i.e. the maximum of empirical peak) is placed at
June 2008 (i.e. at the 123rd day of the hossa). The em-
pirical data were downloaded from the internet address
http://www.economagic.com/ (theoretical, solid curve
was defined in the main text by Eq. (1.2)).

was found by the fit on July 2008. Optimal parameters
obtained from the fit were shown in Tables III and IV.
As it is seen,

(i) the crash is here of the first order as shape exponent
α < 1,

(ii) dispersions of all parameters is surprisingly small
(of the order of few percents), for example, the the-
oretical crash point tc appeared (in practice) at the
same time as the empirical one.

We found that:

(iii) our aproach has ability (by direct extension) to the
short-term, let us say a single quarter, forecast.

2. Comparison with stock market empirical data
and conclusions

For literal verification of validity of our RMFDFM, one
can fit the formula (1.2) to empirical data forming recent
peak of index WIG20 (cf. Fig. 8 and Table V). It is seen
that the fit (depicted by the solid curve and considered
as a trend) is satisfactory and the distribution of empiri-
cal points around the trend seems to have the statistical
character.

Fig. 8. A recent full peak of WIG20 extended from
2004-02-09 to 2009-06-22 (or from 2440th stock mar-
ket session to the 3787th one). It is seen, how sudden
and sharp is the theoretical prediction of the peak.

However, the relaxation time τ concerning the hossa
(cf. Table V) is burdened with huge dispersion. This
case (observed within our deterministic approach) seems
to be a typical one for any hossa (see relaxation times
shown in Table V for S&P500 and NASDAQ). It sug-
gests the existence of a financial uncertainty principle
(FUP) of quantities substantial to reach a profit by any
investor‡‡. This principle can be formulated as follows:
among quantities which values have to be known to reach
a profit during the hossa, at least one is unmeasurable,
i.e. its value cannot be determined with sufficient pre-
cision. Otherwise, the profit could be obtained without
any risk which would be in contradiction to the market
paradigm saying that market eliminates the arbitrage op-
portunity. Fortunately, due to anticorrelations existing
between these quantities, the summarized dispersion can
be sufficiently small to make the total fit satisfactory.

Moreover, we found that in this case the shape expo-
nent α is much smaller than 1 (having large dispersion, cf.
the corresponding number shown in Table V). Hence, the
fitted (solid) curve violently accelerates when it moves to-
ward tc, where its derivative diverges. It suggests that
we have to deal at this singular point with the analogy
of the first order phase transition on the Warsaw Stock
Exchange. Below, we extended this discussion by consid-
ering recent daily peaks of S&P500 and NASDAQ.

‡‡ Uncertainty, together with risk and profit, were thoroughly and
widespreadly reviewed in book [39].
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Full peaks of these indices were presented in subse-
quent Figs. 9 and 10, while the corresponding fit param-
eters were shown in Tables V–VII. Again, satisfactory
agreement with empirical data are observed, which makes
possible to draw some common conclusions.

Fig. 9. A recent full peak of S&P500 extended from
2003-05-07 to 2009-06-12 (or from 20000 stock market
session to 21536 one).

Fig. 10. A recent full peak of NASDAQ extended from
2003-05-23 to 2009-09-06 which covers 1521 stock mar-
ket sessions.

TABLE V
Fit parameters describing recent peaks of typical main
indices of small, middle and large stock markets (upper
elements L and R labeling parameters, designate left and
right paths of a peak, respectively).

Parameter WIG20 S&P500 NASDAQ

tLc 937± 1 1219± 4 1193± 43

tRc 940± 0 1120± 0 1105± 0

τL 9967± 155981 1482± 1681 298± 541

τR 218± 31 323± 51 282± 39411

αL 0.134± 0.138 0.72± 0.19 0.595± 0.121

αR 0.861± 0.018 1.60± 0.47 2.29± 6.32

ωL 0.00361± 0.00003 0.0114± 0.0007 0.0131± 0.0003

ωR 0.0472± 0.0001 0.0146± 0.0003 0.020± 0.010

∆ωL 0.0269± 0.0001 0.0129± 0.0007 0.0113± 0.0003

∆ωR 0.007± 0.0 0.0461± 0.0003 0.012± 0.010

It is seen from Table V that

• the range of the hossa shape exponent α is larger
than 0 and smaller than 1 for considered peaks,

TABLE VI
Calibrating fit parameters describing peaks of the same
indices as shown in Table V.

Parameter [p] WIG20 S&P500 NASDAQ

XL
0 + XL

1 1957± 977 1204± 59 1931± 458

XR
0 + XR

1 3145± 49 4010± 110 1193± 43

XL
1 −890± 21 61± 3 −181± 7

XR
1 −421± 19 −866± 81 −440± 32

TABLE VII
Accuracy of the fit, where fit parameters were shown in
Tables V and VI.

Fit accuracy WIG20 S&P500 NASDAQ
R2

L 0.9978 0.9994 0.9987
R2

R 0.9970 0.9996 0.9978

• localization of maxima, tc’s, of hossa and bessa
were found with relatively small dispersion in con-
tradiction to fractional relaxation times, τ ’s. For
the WIG20 tRc < tLc while for two remaining indices
tRc ≥ tLc .

• all frequencies, ω, and frequency shifts, ∆ω, are
much smaller than 1, which is a constraint required
for application of the approximate solution (1.1).

It is evident from Table VI that

• the calibration parameter X1 can assume both the
positive and negative values.

From Table VII it follows that:

• accuracies, R2, of all fits are satisfactory as they are
restricted to rather narrow range 0.9970 ≤ R2 ≤
0.9996.

We can conclude that:

• the rough short-term forecasting made by simple
extension of theoretical curves is, of course, possible
(see, for instance, Fig. 8).

We hope that results presented here and in our recent
works [1, 2] pointed out at least a technical utility of the
RMFDFM to study a singular evolution of various sectors
of economic systems.

TABLE VIII
Dates which correspond to tLc and tRc shown in Table V.

Date WIG20 S&P500 NASDAQ
tLc 2007-10-25 2008-03-11 2008-02-19
tRc 2007-10-29 2007-07-12 2007-10-11
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