
Vol. 117 (2010) ACTA PHYSICA POLONICA A No. 4

Proceedings of the 4th Polish Symposium on Econo- and Sociophysics, Rzeszów, Poland, May 7–9, 2009

Multifractal Dynamics of Stock Markets
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We present a comparative analysis of multifractal properties of financial time series built on stock indices
from developing (WIG) and developed (S&P500) financial markets. It is shown how the multifractal image of the
market is altered with the change of the length of time series and with the economic situation on the market.
We emphasize that the proper adjustment of scaling range for multiscaling power laws is essential to obtain the
multifractal image of time series. We analyze in this paper multifractal properties of real financial time series
using Hölder f(α) representation and multifractal-detrended fluctuation analysis method. It is also investigated
how multifractal properties of stocks change with variety of “surgeries" done on the initial real financial time
series. This way we reveal main phenomena on the market influencing its multifractal dynamics. In particular,
we focus on examining how multifractal picture of real time series changes when one cuts off extreme events like
crashes or rupture points, and how fluctuations around the main trend in time series influence the multifractal
behavior of financial series in the long-time horizon for both developed and developing markets.

PACS numbers: 89.65.Gh, 89.75.Da, 89.20.−a

1. Introduction

Multifractality [1–4] is rather a new concept when ap-
plied to financial time series. It may be considered as
the higher order extension of the monofractal analysis
used successfully e.g. in analysis of persistency level in
data — particularly in econophysics. So far it is not
very clear what practical applications of multifractality
in financial time series might be. However, some prelim-
inary directions in this topic have already been shown
(see e.g. [5]). In monofractal approach, one usually looks
for the probabilistic (stochastic) behavior of some geo-
metrical or topological properties of signal fluctuations
around the local trend in given time series. One expects
power-law relation between the quantity describing such
fluctuations (e.g. variance) and the length of time window
s along which the fluctuation is being measured. A good
example of such relation is the one provided in detrended
fluctuation analysis (DFA) [6–11] where the power law
relation between the variance of detrended signal F 2(s)
and the width of time window s reads

F 2(s) ∼ s2H (1)
with the Hurst scaling exponent H (0 < H < 1) [12, 13].
If 0 < H < 1/2 the signal is said to be antipersistent,
if 1/2 < H < 1 the signal is persistent, while the case
H = 1/2 corresponds to no memory present in signal
increments (Brownian motion).

The relation given by Eq. (1) is usually understood as
independence of scaling properties of a system from the
scale — thus H is constant. However, in many cases it
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might not be so. There might be a finite or infinite num-
ber of crossover points sX such that for time scales s < sX

the fractal properties differ from these for s > sX. In this
case, the fractal structure will be described by the whole
set of H exponents instead of just one, thus revealing
the multiple scaling rules. Using the standard DFA pro-
cedure one calculates only the leading scaling rule linked
to major or more frequent fluctuations. Moreover, distor-
tion of the signal from the leading pattern before or be-
low the crossover point sX may be very weak, so in order
to extract them, one is forced to use more sophisticated
technique based on the artificial amplification of weak
(with respect to the average ones) fluctuations. Such
philosophy makes the background of the modified DFA
proposed by Kantelhardt et al. and called multifractal
DFA (MF-DFA) [14]. One replaces in this method the
“ordinary" fluctuation function F 2(s) from Eq. (1) by its
q-th moment F 2

q (s) defined as follows:
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for q = 0, where N counts the number of non-overlapping
boxes of size s each for which detrendization procedure
is performed.

One obtains in this manner the whole continuous set
of Hurst exponents h(q) labeled by different q ∈ R. They
are related to different level of amplification of small
fluctuation in data. The h(q) dependence is decreasing
monotonic function of q for stationary signal which ba-
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sically reflects the fact that relatively small fluctuations
happen more often in this signal than relatively big ones
do [14]. If so, the so-called Hölder spectrum or singular-
ity spectrum f(α) [4] of the Hölder exponent α can be
used where

α =
ds(q)
dq

(4)

and
s(q) = qh(q)− 1 , (5)

while f(α) is determined by Legendre transform [16, 17]:
f(α) = q(α)α− s(q(α)) . (6)
The latter approach makes a useful representation of

multifractality. The singularity spectrum in this case
should have rather regular form of inverse parabolic
shape as shown in Fig. 1. The width of f(α) spectrum
measures the multifractality level of the signal. For the
pure monofractal signal this width converges to one point
α = H = h(2) and f(α) = 1, while if the bigger amount
of multifractality is present in the signal, the width of
f(α) spectrum becomes wider.

Fig. 1. Singularity spectra of 3 artificial RMD series
with assumed H = 0.3, 0.5 and 0.7, respectively. The
peaks of the spectra reflect the pre-set H exponent in
terms of the Hölder exponent α.

We will analyze in this paper multifractal properties of
real financial time series, using f(α) representation and
MF-DFA method argued as working better than other
approaches [15]. Our main task is to investigate how
multifractal properties of stocks change with variety of
“surgeries" done on the initial real financial time series.
We shall do this in the following sections. Our aim is to
see what phenomena on the market influence its multi-
fractal dynamics in the first place. In particular, we will
focus on examining how multifractal picture of real time
series is changed when one cuts off extreme events like
crashes or rupture points, and how established trends or
their absence influence the multifractal behavior of de-
veloped and developing markets.

2. Multifractal noise in monofractal signal
of finite length

All statistical methods determining the fractal proper-
ties of time series give an exact result only for series of

infinite length. Since this applies also to the MF-DFA
scheme, one should know how the length of series is an
important factor in discovering its multifractal structure.
In fact, finite signals assumed by their construction to
be monofractals, reveal some artificial multifractal struc-
ture. This is because big fluctuations in finite time series,
measured within MF-DFA, seem to be more rare than
for longer or infinite time series. It leads to smaller h(q)
value for q → ∞ in finite series than for infinite ones,
and finally, to some artificial multifractal structure of fi-
nite time series. This kind of multifractal noise should
be subtracted first as a background influencing any real
property of monofractal or multifractal time series of fi-
nite length.

To explore this issue we must have a “test series”
with known fractal characteristic. We will use monofrac-
tal series generated by the random midpoint displace-
ment (RMD) algorithm [22]. The resulting h(q) func-
tions calculated within MF-DFA for three series of length
L = 214 generated with input Hurst exponent values
H = 0.3, 0.5, 0.7 respectively are presented in Fig. 2.

Fig. 2. The h(q) plot calculated for 3 artificial RMD
series simulated with assumed input values H = 0.3, 0.5
and 0.7, respectively.

One may notice a small degree of multifractality (short
span of h(q)) for all three series. The series with higher
H show a bigger deviation from monofractality. The non-
-monotonic behaviour of h(q) is reflected by the “twist”
on top of the singularity spectrum (see Fig. 1). This
effect will be also observed in following sections where
real financial data are analyzed. One can also see that
the maxima positions of the spectra reflect the assumed
Hurst exponents values.

It is essential to find the influence of series length on
the width of multifractal spectrum. To observe this, one
has to calculate the highest and lowest value of α, as well
as the position of the f(α) peak. This was done on a sam-
ple of 20 series each for four lengths L = 28, 210, 212, 214

and for different H values. The width of f(α) spectrum
was rapidly changing with L and seemed to be weakly de-
pendent on H. Table presents results found for H = 0.5.

They confirm the significant narrowing of ∆α spec-
trum width when the length L of time series is increas-
ing. Since we will deal later on with series lengths around
L ≈ 214, we may assume that the finite size effects should
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TABLE
An example of dependence between the length
L and the singularity spectrum width ∆α for
artificially generated RMD series with assumed
input value of Hurst exponent H = 0.5.

Series
length L

Spectrum
width ∆α

Peak
position

28 0.73 0.56
210 0.28 0.50
212 0.21 0.50
214 0.22 0.51

be around δfinite(∆α) ≈ 0.20.
Before analyzing real data we also need to observe the

scaling range of the F (s, q) ∼ sh(q) relation. For the ar-
tificial data, this range spans almost the entire available
time window lengths (see Fig. 3). However, for the entire
set of real data (later sections will also discuss parts of
these data), the scaling range becomes shorter and de-
creases with increasing |q| values.

Fig. 3. An example of F (s, q) ∼ sh(q) plot for a series
with assumed H = 0.7 for q = −5 (top), q = 0 (middle)
and q = 5 (bottom).

Fig. 4. Exemplary plots of the F (s, q) ∼ sh(q) relation
for the entire S&P500 series with q = −5 (top), q = 0
(middle) and q = 5 (bottom).

The corresponding effect for the S&P500 is visible in
Fig. 4. It is even more significant for positive and larger q
which is shown in Fig. 5 (compare with Fig. 4). To solve
this problem a careful separate study of all F (s, q) ∼
sh(q) relations and manual selection of the scaling range

Fig. 5. Exemplary plot of the F (s, q) ∼ sh(q) relation
for the entire S&P500 series with q = 13.

is needed. It was done in analysis of all financial data
presented below.

3. Long-term data analysis

The first and most obvious approach is to make the
long-term data analysis, i.e., to calculate the multifrac-
tal structure of the stock market indices in the whole
available time horizon. Our analysis focuses on two in-
dices:

• WIG (Warsaw Stock Exchange)) — from April
16th 1991 till October 10th 2008

• S&P500 (NYSE & Nasdaq) — from December 30th
1927 till September 3rd 2008

They are examples of developing (Poland) and developed
(USA) markets, respectively. All time series were created
from daily closing values of each index. The S&P500

Fig. 6. The singularity spectra of the entire WIG clos-
ing day data and its shuffle. The bottom figure shows
the corresponding h(q) dependence.
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Fig. 7. The singularity spectra of the entire S&P500
closing day data and its shuffle. The bottom figure
shows the corresponding h(q) plots.

data were downloaded from the financial website of Ya-
hoo.com [18] and WIG data from a stock market website
of Wirtualna Polska [19].

The singularity spectra f(α) and h(q) plots of all dis-
cussed time series (as well as their shuffles) are presented
in Figs. 6, 7. Surprisingly, all markets show unexpected
non-monotonic h(q) behavior. This phenomenon, in ad-
dition to the problems with short scaling ranges (men-
tioned in the previous section), strongly suggests a distur-
bance in the multifractal structure of the series. Spectra
of two shuffled data sets are positioned around the ex-
pected location α = 0.5. These sets of data also show
a monotonic behavior of the h(q) function, contrary to
originally ordered data. The spectra width for original
as well for shuffled data are much wider than those of the
corresponding RMD spectra and hence indicate the mul-
tifractal content in dynamics of long-term market data.
Simultaneously, the non-monotonic h(q) behavior seems
to indicate non-stationary effects in these data. The lat-
ter case needs more detailed study partly provided below.

4. Multifractal analysis of financial data
in established trends

It has been shown by a number of authors (see e.g.
[5, 20, 21]) that positive and negative fluctuations in time
series have different fractal properties. Oświęcimka et al.
has shown in Ref. [5] that DAX data in increasing and
decreasing trends has different multifractal properties for
particular choice of periods Dec. 1997–Dec. 1999 and May
2004–May 2006. It is quite natural to investigate whether
these properties are general and if so, in what extent they
are general for other markets. In particular, it is inter-
esting to know how multifractal properties of established
trends depend on the internal structure of these trends.

Fig. 8. Chosen parts of WIG and S&P500 indices con-
taining the bearish and bullish phases. The moment of
the trend change, splitting the series into two distinct
phases, is marked as a vertical line.

Fig. 9. Singularity spectra of the bullish and bearish
phase for the S&P500. The bottom figure shows re-
spective plots for WIG index.

We were interested in the beginning in positive (nega-
tive) long-lasting trends with no sub-trends in opposite
direction. We tried to exactly repeat this way the anal-
ysis made for DAX in Ref. [5]. Such trends turned out
to be very rare for S&P500 and WIG indices. The se-
lected fragments of both indices with required properties
are shown in Fig. 8. They have both long-lasting positive
trend (bullish phase) followed by a long negative trend
(bearish phase) and no astonishing internal events.

The resulting singularity spectra (see Fig. 9) show the
expected shift of the bearish phase spectra towards higher
values of α. Since these results were obtained from data
with a much wider scaling range, they should be consid-
ered as much more reliable than previous ones presented
for entire indices. It is also worth noting that the spec-
tra are now much wider, which suggest a more complex
multifractal structure. In the case of WIG this effect
might be amplified by the short data set, nevertheless
the spectra width of a RMD series with similar length
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is still narrower. This improvement of singularity spec-
tra for well determined trends in both indices (i.e. quasi
quadratic dependence f(α) from α) with respect to spec-
tra obtained for the entire indices might suggest that the
multifractality is strongly affected by non-stationarity
of financial time series. To verify such hypothesis we
checked what multifractal properties are hidden in sub-
parts of entire index. The S&P500 index is particularly
good for this search because it is long enough comparing
with WIG, thus containing much more amount of data. If
one divides the entire S&P500 history into two regimes —
one with small fluctuations (small volatility) and the sec-
ond one with high fluctuations (high volatility) as shown
in Fig. 10, a very intriguing result for singularity spec-
tra is found in both regimes. Results of this search are
plotted in Figs. 11, 12, where a comparison of singularity
spectra and h(q) dependence for both regimes with f(α)
and h(q) behavior for the entire index is provided. It is
clear that both regimes show separately a monotonic h(q)
dependence leading to reversed parabolic shape of f(α).
It is not the case of the entire index.

Fig. 10. The entire S&P500 time series. The vertical
line denotes the border between two regimes. One can
see two phases corresponding to low and high oscilla-
tions around the trend.

Fig. 11. Singularity spectra of the first part of the
S&P500 and for the entire signal.

However, both spectra for two regimes are slightly dif-
ferent — the width of multifractal spectrum (and the
width of h(q) dependence) is larger for the first regime
characterized by lower volatility and no opposite sub-
-trends inside. We checked the same happened for other,

Fig. 12. Singularity spectra of the second part of the
S&P500 and for the entire signal.

Fig. 13. The top figure represents an example of
“good” data without abrupt events. The bottom left
plot shows an example of the F (s, q) function scaling
for this data. The bottom right figure shows the corre-
sponding singularity spectrum.

even shorter trends, whenever they are affected by well
formed sub-trends of opposite direction or by extreme
events like crashes, etc. This phenomena is shown on
example of S&P500 time series without and with inter-
nal structure (see Figs. 13, 14). Figure 13 presents an
example of increasing trend with no visible distortion in-
side. We called it “good" data. Its dynamics is associ-

Fig. 14. The top figure represents an example of “bad”
data taken immediately after the period shown in
Fig. 13. On the bottom left an example of F (s, q) ∼
sh(q) scaling for this data is presented. It shows much
poorer scaling properties than the one in Fig. 13. The
bottom right figure shows the “twisted” singularity spec-
trum, a result of a non-monotonic h(q) dependence.
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ated with nice multifractal properties — well established
quadratic f(α) dependence and the monotonic h(q) be-
haviour. Simultaneously, time series of the same length,
but collecting data from the very next period, has some
extreme events inside and it contains opposite sub-trends
connected with these events (see Fig. 14). We call them
“bad” data. The scaling Fq(s) ∼ sh(q) is worse here and
the presence of “twist" in singularity spectrum f(α) con-
firms the non-monotonic character of h(q) function and
leads also to non-quadratic f(α) dependence. The multi-
fractal character of time series is here very much affected
by the presence of abrupt events, i.e. crashes or data with
respectively large fluctuations.

5. Influence of extreme events on multifractal
dynamics of stocks

The sub-trends containing abrupt events can be artifi-
cially removed to see if such removal would improve the
multiscaling properties of the new trend constructed after
such “surgery". The applied procedure is simple. First,
the time series with abrupt events is differentiated. Then,
at the level of returns, these events are removed and the
time series of remaining returns is integrated to get the

Fig. 15. The marked region with vertical lines on the
left shows the extreme event that was removed from the
original S&P500 signal. The singularity spectra of the
original part of the S&P500 and the modified one is
shown on the right.

Fig. 16. The crossed region shows the abrupt regime.
On the right, the singularity spectra of the original
WIG fragment and the modified spectra after the abrupt
regime has been removed.

Fig. 17. Another example of abrupt regime removed
from WIG time series (left) and the corresponding
change in singularity spectra (right).

new artificial evolution of financial index. Examples of
such modification are visible for variety of events for both
S&P500 and WIG indices in Figs. 15, 16, and 17 respec-
tively. It is remarkable, how much such surgery signifi-
cantly improves multi-scaling properties of financial time
series and restores the monotonic character of decreas-
ing h(q) function. The width of singularity spectrum has
also noticeably increased when abrupt events had been
removed.

6. Conclusions

We presented a comparative analysis of multifractal
properties of financial time series built from stock indices
of developing (WIG) and emergent (S&P500) markets
using MF-DFA technique. We found that financial time
series in a very long time horizon show in both cases very
short multiscaling ranges and in turn, their multifractal
image is somehow obscured. Therefore we analyzed in
shorter time horizon the selected parts of financial data
chosen due to their specific properties.

The most important result is that division of time se-
ries into regimes of distinctly different (large or small)
fluctuations around the main trend, as well as removal
of abrupt events like crashes or significant opposite sub-
-trends, radically improves the multiscaling ranges and
restores the monotonic behavior of h(q) dependence as
well as the reversed parabolic shape of multifractal sin-
gularity spectrum f(α). The width of singularity spec-
trum also increases noticeably in these cases. This leads
us to conclusion that non-stationarity of financial time
series significantly influences their multifractal character
leading to behavior beyond our expectation for multifrac-
tal spectrum shape known from studies with artificially
created mono- and multifractal signals.

It is clear that further research of length effects as well
as the effects of non-stationarity in real time series in-
fluencing multiscaling and multifractality is needed with
hope for further practical applications.
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