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Indices of selected financial markets from various parts of world, different sizes and levels of development are
investigated. The local Hurst exponent is globally compared to log-prices. Periodic changes in correlation coefficient
are quantified via discrete Fourier transform. Local Hurst exponents spectra are discussed for investigated markets.
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1. Introduction

In the last years a lot of attention was paid to the Hurst
exponent and its application to predict prices in financial
markets. In this study, we employ the Hurst exponent
to quantify the long-term correlations. We use detrended
fluctuation analysis (DFA) method to calculate the Hurst
exponent, as it is known to be the most efficient [1]. The
method itself is described in the next section. The appli-
cation of DFA for studying the stock market behavior was
initiated by Liu et al. [2]. They show that the S&P500
stock index exhibits weak long-range correlations. On
the other hand, Grech and Pamuła [3] and Grech and
Mazur [4] employed the local Hurst exponent behavior
in order to predict crashes on the financial market.

2. Methodology

The methodology employed to process a data is based
on applications of the DFA to the return time series.
This is the fractal scaling method commonly applied for
detecting long-range correlations in non-stationary se-
quences. The method of calculating the Hurst exponent
can be summarized as follows. For a given stochastic
time series p(i), i = 1, . . . , M , which in our case is a se-
ries of index daily return rates: p(i) = ln(xi+1)− ln(xi),
i = 1, . . . , M − 1, where xi is an i-th closure price, com-
pute the mean return rate p̄ = [

∑M−1
i=1 p(i)]/(M − 1).

Then calculate the integrated time series given by the
equation below

x(i) =
i∑

j=1

[
p(j)− p̄

]
, i = 1, . . . ,M − 1 . (1)

Now, let us work with the observation box of N =
210 consecutive return rates (N is called the width or
observation box) that implies the idea of a local Hurst
exponent. The size of the observation box N should be
set carefully. If N is too large, Hloc losses its locality and
correlations with range much smaller than N could not
be seen. On the other hand, choosing N too small causes
big fluctuations of the local value of the exponent [5].

There is no exact formula for calculating width value.
For detailed analysis of impact of width on the results
see [5] and recerences herein. The procedure continues
as follows. Divide the first N values of the integrated
time series into windows of the same size τ , which is
chosen to be a divisor of N . Thus we will have N/τ
windows. Apply linear fit in each window and then ob-
tain linear approximation of the trend, denoted by y(i),
i = 1, . . . , N . Calculate the variance of the difference
between the original integrated time series and the local
trend in each window as

F 2
k (τ) =

1
τ

τ∑

i=1

[xk(i)− yk(i)]2 . (2)

The above equation defines the variance in k-th window,
k = 1, . . . , N/τ , xk(i) — i-th term in k-th window of
the integrated time series. Average the variances over all
windows

〈
F 2(τ)

〉
=

τ

N

N/τ∑

k=1

F 2
k (τ) . (3)

Then, change the size of the window and repeat the
above procedure. Obviously, the average variance will
increase with window size. However, a power law behav-
ior is expected [2]:〈

F 2(τ)
〉 ∝ τ2Hloc , (4)

The above procedure allows one to calculate the local
(210 prices) Hurst exponent on the session by session
basis by moving the observation box. The extracted Hloc

measures the persistency of the time series (Hloc < 1/2)
or antipersistency (Hloc > 1/2). Special case Hloc = 1/2
corresponds to the Brownian motion [6].

3. Data

We analyze the daily index values of selected stock
markets. In order to be able to perform preliminary com-
parison between emerging and mature markets we choose
data from both of these groups. Polish and Hungary
stock exchanges are representatives of emerging markets.
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On the other hand, we use data of NYSE and London
Stock Exchange — very big and old financial markets, as
well as French, Netherlander and German — mature but
not so big markets. The same group contains also two
other South American stock markets — Argentinean and
Brazilian. Information on the analyzed data is collected
in Table.

TABLE
Description of data.
Index Stock Exchange Start date End date

WIG Poland (Warsaw) 1991-04-16 2009-04-30

DJIA USA (New York) 1995-01-03 2009-04-30

DAX Germany (Frankfurt) 1995-01-02 2009-04-30

BUX Hungary (Budapest) 1995-01-03 2009-04-30

BOVESPA Brazil (Sao Paulo) 1995-01-02 2009-09-14

BUENOS Argentina (Buenos Aires) 1996-10-08 2009-09-14

CAC40 France (Paris) 1995-01-03 2009-09-14

EOE Netherlands (Amsterdam) 1995-01-02 2009-09-14

FT-SE100 England (London) 1992-10-22 2009-09-14

To give the idea of the differences between investigated
markets, i.e., emerging vs. mature as well as small vs. big,
we present stock exchanges in Fig. 1. The horizontal axis
shows the year a stock exchange has been founded.

Fig. 1. Market development diagram.

In the case of Warsaw and Budapest stock exchanges
we assume the year of foundation to be 1991 and 1990,
respectively. Although Warsaw stock exchange existed
before Second World War, there was a 40-year-break of
operation during post war times. That is why we assume
the above starting year of the “new” stock market. To
display size of the market we decided to use number of
equity noted (vertical axis). This choice could be ques-
tionable but a number of companies, annual turnover and
daily volume usually come together. Choosing the num-
ber of companies as the indication of size allows us to
avoid problems with comparison of different currencies,
etc.

4. Analysis

There are works using local Hurst exponent to predict
crashes on the financial markets (eg. [4, 7]). It has been

noticed that decrease of Hloc as well as other Hloc-related
signals precede crash. These observations have been con-
firmed by the WIG (Poland) and DJIA (NYSE) signals as
well as by analysis of some other markets [7]. As an exam-
ple and as an introduction to further analysis we present
(see Fig. 2) log-prices and local Hurst exponent for EOE
index (Netherlands, Amsterdam). For convenience run-
ning average of 20 values of Hloc has been plotted instead
of values. There is the common horizontal scale for both
plots. Crashes indicated by A, B, and C are clearly pre-
ceded by decrease of Hloc to the values below 0.5. Similar
situation can be observed in the case of D and E, but the
Hurst exponent values decrease almost at the same time
when index drops.

Fig. 2. EOE index log(price) vs. date (top) and lo-
cal Hurst exponent (bottom). Vertical lines indicate
crashes, see text.

Fig. 3. Correlation coefficient between log(price) and
Hloc for three markets. Vertical axis: arbitrary trading
day number.

In order to compare exponent with prices in more
quantitative way we calculated C(i), i.e., correlation co-
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efficient between Hloc and log(price), given by the equa-
tion below

C(i) =
cov (Hloc, log(price))

σHloc · σlog(price)
. (5)

The running correlation coefficient C(i) was calculated
between Hloc(i−N +1)÷Hloc(i) and p(i−N +1)÷p(i),
where p(i) = log(price(i)). The value of the index (i)
is chosen in such a way the p(i) is the logarithmic price
for the same day as Hloc calculated for [i −N + 1; i] in-

tegrated price series. Correlation coefficients for WIG,
DJIA, and CAC are presented in Fig. 3. The C(i) varies
from about −0.8 to 0.8 for all three markets, changing
sign on the regular basis. Thus the Hurst exponent ex-
hibits strong correlation with log(em price), frequently
going into strong anti-correlation and vice versa. We de-
cided to measure frequency of changes or in other words,
time between switches.

Fig. 4. Spectra of periods obtained using the discrete Fourier transform of the correlation function. Vertical dashed
lines in each plot represent 300, 500, 700 days period. Horizontal dashed lines are drawn in 1/3 and 2/3 of the total
height of each plot. Vertical axes are in arbitrary units.

In order to quantitatively measure the periodicity of
analyzed time series we use discrete Fourier transform.
The common use of discrete Fourier transform (DFT) is
to find the frequency components of a signal buried in a
noisy time domain signal

X(k) =
N∑

j=1

x(j)ω(j−1)(k−1)
N , (6)

where ωN = e(−2π i )/N . In order to present our results
in more intuitive way we show magnitude of the Fourier
transform as a function of period T , instead of frequency
k (see Fig. 4). Because the data consist of about 3000
prices, we studied periodic components with periods up
to about 1000 days, so at least 3 periods could fit in the
analyzed data.

In the case of some markets one can observe one or
two big spikes indicating dominant periods. The one of

the spikes is located (depending on the market) around
650–750 days (BUE, BUX, DJIA, EOE, FTS). For BOV
that spike is visible, too. However, its height is obscured
by the large background. In the case of CAC the spike
is visible but not dominant, making this market similar
to market represented by DAX index. These two indices
(CAC — France, DAX — Germany) are similar by the
presence of dominant spike around 350–400 days accom-
panied by another smaller one around 480–500 days. For
the Polish market there are two spikes of different ratio
but with similar positions.

The last part of this paper concerns characteristics of
the spectra of local Hurst exponent. The mean value
and standard deviation form the axes of the diagram in
Fig. 5. As it can be seen from this picture, the central
part is occupied by the group of big and long-operating
markets: New York, Sao Paulo, Frankfurt, London, Am-
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sterdam. On the other hand there are also markets in
the top-right part of the graph — big value of mean and
standard deviation. Buenos Aires could be regarded as
the market interpolating between East European emerg-
ing markets and well developed markets mentioned at the
beginning of this paragraph. Indeed, Argentinean stock
exchange has less importance in comparison with Brazil-
ian one. The Paris stock exchange is located on the part
of the graph characterized by relatively small mean and
standard deviation of the Hloc.

Fig. 5. Parameters of Hloc distribution for analyzed
markets.

5. Summary

Comparison of the log(price) with local Hurst expo-
nent for selected markets has been performed using cor-
relation coefficient C(i). Local (210 sessions) correlation
coefficient exhibits periodicity. The periodic components
of C(i) have been evaluated using the discrete Fourier
transform. Various similarities and differences between
investigated stock markets have been pointed out. Char-
acteristics of Hloc spectra for analyzed markets have been
briefly discussed.
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