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Surface True and Leaky Waves in Subsonic and Supersonic
Regions. Explicit Solution of a Simple Model
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A simple model of a surface of a 2D continuum is shown to exhibit subsonic and supersonic surface resonances
(leaky waves, pseudosurface waves), i.e. finite-lived excitations, along with usual surface waves (true subsonic
surface waves). The physical meaning, controversial in the existing literature, of the surface leaky waves in both
regions is discussed by a thought experiment in which a stimulus adjusted to the resonance parameters is applied
to the surface. The infinite displacement-stimulus ratio in the long-time limit then is shown to be in power in
all the cases of surface states and a finite amplitude of the leaky waves is demonstrated despite an apparent
divergence suggested by their algebraic form.
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1. Introduction

The presence of surfaces breaks the translational in-
variance of the material and, therefore, gives rise to new
vibrational states showing amplitudes that decrease with
the depth into the bulk. The kind of motion would be
precluded if the material had no bounds because the am-
plitude then would increase infinitely on the side of vac-
uum. When the system remains spatially periodic in the
surface plane the wave vectors parallel to the surface are
“good quantum numbers” so that the localized vibrations
propagate along the surface as surface waves. The phe-
nomenon occurs in a large range of scales starting from
surfaces of stars and of the Earth, to those of crystals
and nanoparticles.

Acoustic surface waves have been described for the first
time by Lord Rayleigh in 1887. Their frequencies are al-
ways lower than those of all the bulk waves with the
same component of the wave vector parallel to the sur-
face. Modifications of surfaces by some adlayers or, on
the atomic scale, adatoms, may however, bring the fre-
quencies of surface vibrations to the regions where the
propagation of bulk waves conveys the energy to the
bulk. Then the surface wave acquires a finite lifetime
and becomes a surface resonance. In the next section
we give the rudiments of the mathematical treatment of
the surface waves. In Sect. 3 we construct a simple model
showing both, surface waves and surface resonances. The
model allows one to obtain all the characteristics of the
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vibrational surface states in an analytical way. We then
discuss, in Sects. 4 and 5, the physical interpretation of
apparently paradoxical solutions of the governing equa-
tions exhibiting an increase in amplitude in the direction
into the bulk.

2. Basic definitions

The dynamics of a system consisting of a semi-infinite
substrate terminated by a surface is governed by the
equations of motion of the bulk material and by the
boundary conditions imposed by the properties of the
surface.

2.1. Bulk radiative bands

The solutions of the governing equations in the bulk re-
gion are, in the harmonic approximation, combinations
of the Bloch waves

wµ(r, t) = eµ(k, ω)e− iωt+ik·r, (1)
where k is a wave vector from the first Brillouin zone, ω
is the corresponding frequency and eµ, µ = 1, 2, . . . , n is
the polarization vector. The dimension n of the polar-
ization vector equals the number of the degrees of free-
dom of the unit cell of the material. The polarization
vectors are the eigenvectors and the frequencies ω2

j (k),
j = 1, 2, . . . , n are the eigenvalues of a k-dependent n×n
matrix M(k, ω). The secular equation det M(k, ωj) = 0
is, thus, fulfilled defining the dispersion relations ωj(k)
of the bulk waves. Decomposing the wave vector into the
components k‖ and k⊥, parallel and perpendicular to the
surface, respectively, one can solve the secular equation
detM(k‖, k⊥, ω) = 0 for the unknown k⊥ at any point of
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the plane (k‖, ω). The regions in this plane where at least
one of the resulting k⊥ is purely real support bulk homo-
geneous waves. These are, thus, radiative regions also
called bands of the bulk waves or, simply, bulk bands.
The bulk bands can be also viewed as the projection of
the bulk dispersion relations onto the plane (k‖, ω). The
system of the bulk bands depends on the spatial orien-
tation of the surface (Miller indices in the case of flat
surfaces) but are independent of the properties of the
surface itself, i.e. of the boundary conditions of the dy-
namical problem.

Complex solutions k⊥ of the secular equation at real
frequency ω with Im k⊥ > 0 describe near fields, also
called evanescent partial waves, that decay exponentially
with the distance from the surface into the bulk. Such so-
lutions are rejected in the infinite system as they would
diverge on the vacuum side of the surface. They are,
however, finite everywhere at the presence of the surface.
In summary, any solution of the dynamical problem of
a medium terminated by a surface in the harmonic ap-
proximation is a linear combination of the partial homo-
geneous and/or evanescent bulk waves.

2.2. Surface vibrational states

The equations of motion of the surface layer constitute
the boundary conditions of the problem. The solution of
the whole dynamical problem for given k‖ and ω, with
or without an external perturbation applied to the sur-
face, then is such a combination of bulk and evanescent
partial waves that satisfies the set of boundary condi-
tions. The solutions coming about for real frequencies
with zero external perturbation constitute the surface
states or, equivalently, surface waves. If they occur out-
side the bulk bands, i.e., by definition, have all the partial
waves decreasing into the bulk, they are then called true
surface waves, as they are really confined to the surface
region. Whenever such waves persist down to the long
wavelength limit, their phase speeds of propagation along
the surface are necessarily lower than the sound speed
of the slowest acoustic bulk wave in the same direction.
Therefore, they are called subsonic surface waves. The
existence of supersonic surface waves, i.e. the ones oc-
curring in the long wavelength limit for real frequencies
within radiative bands has been shown possible at certain
orientations of surfaces in some symmetries of the bulk
materials. Their dispersion relations, represented, in this
limit, by single straight lines on the background of the
radiative bands earned them the name “secluded surface
waves” [1]. Every [2] has found analogous waves on an in-
terface consisting of coplanar thin cavities in a continuous
medium. Recently the present authors have shown a pos-
sibility of existence of true surface waves occurring at one
single point of a radiative band in materials possessing
rotational degrees of freedom of rigid constituents [3] and
for a continuum covered by a specific surface [4]. Such
waves have been called isolated true surface waves [5].

Apart from the solutions with real frequencies the
boundary conditions may yield solutions with complex

frequencies. The condition Im ω < 0 then ensures an
exponential time decay of the corresponding excitations
with the time constant τ = 1/ Im ω. In the long wave-
length and low frequency limit or, equivalently, in a con-
tinuum with no internal degrees of freedom, the corre-
sponding wave vector k⊥ must have also Im k⊥ < 0, i.e.
the corresponding wave increases in amplitude in the di-
rection into the bulk. The mechanism underlying the fi-
nite lifetime is simple: a part of vibrational energy is car-
ried away into the bulk at every swing by the travelling
bulk waves like a liquid from a leaking pot. Therefore, the
corresponding finite-life-time excitations are called leaky
waves [6]. Sometimes the names “pseudosurface wave” or
“surface resonance”, in analogy with impurity resonance,
are also used. Once the real part of the frequency Re ω
of such a wave lies in the bulk radiative band, the local
density of surface states shows a peak of width defined by
Im ω. Then one speaks of supersonic surface leaky wave.

However, leaky waves with Re ω lying outside the bulk
bands are also found in some specific systems, such as
high index surfaces of crystals and solid-liquid inter-
face [7]. The physical significance of such solutions as
well as the interpretation of the spatial infinite increase
in amplitude with the distance from the surface implied
by the leaky waves remains controversial. In the next
section we propose a simple model in which both sur-
face subsonic and supersonic waves may exist as well as
ordinary true subsonic surface wave. A simple thought
experiment will then explain the physical meaning of the
surface states found.

3. A simple model showing subsonic
and supersonic leaky waves

A 2D planar isotropic continuum terminated by a
straight edge (surface) of linear density ρs placed in a
local harmonic potential is probably the simplest model
in which the analytical solutions can be obtained for the
true subsonic surface waves as well as for the supersonic
and subsonic leaky waves. The equation of motion for
the displacement u(x, y, t) perpendicular to the plane of
the system in the bulk reads

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
, (2)

where c is the phase velocity. For the sake of simplicity
we put the x axis along the edge of the system. Any
solution in the bulk then has a generalized d’Alembert
form

u(x, y, t) = u(ζ) , (3)
where

ζ = k̂‖x + k̂⊥y − ct . (4)

The components k̂‖ = k‖/
√

k2
‖ + k2

⊥ and k̂⊥ =

k⊥/
√

k2
‖ + k2

⊥ form a unit wave vector with, however,
a norm being a sum of squares and not a sum of squared
moduli of the wave vector components. A Bloch wave
(Eq. (1)) is of course a particular case of the solution
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given by Eq. (3) with the dispersion relation

ω2 = c2
(
k2
‖ + k2

⊥
)

. (5)

Equation (3) allows one to relate the time derivative of
the displacement u with its gradient being in this case
identical with the directional derivative in the direction
perpendicular to the wave front, so that grad u = − 1

c
∂u
∂t .

Consequently, in particular
∂u

∂y
= k̂⊥ gradu = − k̂⊥

c

∂u

∂t
. (6)

The boundary condition at y = 0 is given by the equation
of motion of the linear density ρs placed in a harmonic
potential V = 1

2Ku. This 1D surface is coupled with the
substrate by elastic forces with the stiffness constant T
and subjected to an external oscillating force of the am-
plitude f0:

ρs
∂2u

∂t2
= T

∂u

∂y

∣∣∣∣
y=0

−Ku + f0 e ik‖x− iωt. (7)

Inserting the relation (6) into Eq. (7) one obtains an ef-
fective ordinary equation of motion of a forced, damped
oscillator

ρs
d2u

dt2
+

Tk⊥
c

du

dt
+ Ku = f0 e ik‖x− iωt. (8)

The reduction of the boundary condition to an ordinary
differential equation is possible when the dispersion re-
lation in the substrate is represented by a straight line
at any direction in the reciprocal space, see Eq. (5). In
general, however, an integro-differential equation has to
be solved due to the dispersion of the phase velocity [8].

4. True and leaky surface waves:
dispersion relations

The bulk band in the present model is represented in
Fig. 1 by a shaded area. It is limited from below by the
straight line ω = ck‖. The solutions of the bulk equation
of motion (2) with the boundary condition (7) for f0 = 0
correspond to the surface states. Their general form is
u(x, y, t) = u0 e ik‖x+ik⊥y− iωt. The loci of the real parts
of their frequencies are shown in Fig. 1 using the following
reduced quantities:

K̃ =
Kρsc

2

T 2
, k̃‖ =

k‖ρsc
2

T
, k̃⊥ =

k⊥ρsc
2

T
,

ω̃ =
ωρsc

T
. (9)

The frequencies are expressed explicitly by the formula

ω̃2 = K̃ − 1
2
±

√
k̃2
‖ − K̃ +

1
4

. (10)

The physically meaningful frequencies have Imω ≤ 0.
In the solution represented by the line A the frequency
is real, i.e. Im ω = 0 and the wave vector k⊥ is purely
imaginary with Im k⊥ > 0. This is, therefore, a sub-
sonic true surface wave, decreasing exponentially with
the depth into the bulk. Its dispersion relation merges
with the bulk band, so that it should not be called “acous-
tic”. The portion B of the line shown in Fig. 1 is char-

Fig. 1. Bulk band (shaded) and dispersion relation of
surface states in model of 2D continuum terminated by
1D surface. True subsonic surface wave (A), subsonic
leaky wave (B), supersonic leaky (C). Segments D and
E showing real frequency and Im k⊥ < 0 have no phys-
ical manifestation.

acterized by a complex frequency Imω < 0. As can be
seen from Eq. (5), the complex wave vector k⊥ must then
have a negative imaginary part Im k⊥ < 0 implying an
increase in the amplitude in the direction into the bulk.
This is, therefore, a subsonic leaky wave. The continua-
tion of this curve inside the bulk band, shown in Fig. 1
as the line C, has analogous characteristic except that
the real part of the frequency lies in the bulk band, i.e.
Re ω > ck‖.

This is typical of supersonic surface leaky wave. The
portions D and E of the line seen in Fig. 1 turn out
to show real frequency and Im k⊥ < 0. Such solutions
seem to have no physical meaning. This supposition is
supported by the calculus of the local density of states
obtained with a weak additional damping. The latter
may be realized as putting the system into a viscous liq-
uid. The result is depicted in Fig. 2. The true subsonic
surface wave is represented by a narrow ridge visible in
the upper right part of the plot. The supersonic leaky
wave is also discernible as a broad maximum within the
bulk band on the left hand side. The subsonic leaky wave
has no direct manifestation in this plot. In fact, it results
in an extra density of states represented by a large max-
imum in the center of the plot just above the lower limit
of the bulk band. Really, the extra states in this region
are responsible for the radiation of energy (“leakage”) re-
lated to this subsonic leaky wave. The portions D and E
of the curve of Fig. 1 leave no traces in the local density
of states that confirms their lack of physical meaning.

5. True and leaky surface waves:
temporal behaviour

The reaction of the system to the oscillating exter-
nal perturbation f0 e ik‖x− iωt with the frequency turn-
ing the left hand side of Eq. (8) into zero can be stud-
ied by the method of variation of parameters. In par-
ticular, we look for the solution of Eq. (8) in the form
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Fig. 2. Local density of states in system of Fig. 1.

u(x, y = 0, t) = A(t)e ik‖x− iωt and insert it into Eq. (8).
A simple calculus shows that the unknown function
A(t) is A(t) = f0t

−2 iρs+Tkperp/c) so that the displacement
u(x, y = 0, t) is

u(x, y = 0, t) =
f0t

−2iρs + Tkperp/c)
e ik||x− iωt . (11)

It is clear that the solutions with purely real frequencies
increase linearly in amplitude to infinity, which is charac-
teristic of a perfect resonance. The ratio u(x, y = 0, t)/f0

tends to infinity in this limit. This ratio also tends to
infinity for the solutions with complex frequencies. How-
ever, the amplitude of the stimulus f0 e ik‖x− iωt goes ex-
ponentially to zero, so the amplitude of the solution effec-
tively vanishes in long times. Having found the function
u(x, y, t) for y = 0 in the time domain t = 0 . . .∞ one
can readily obtain its spatial y-dependence using its gen-
eral form given in Eqs. (3) and (4). The envelope of this
function with a complex frequency is given in Fig. 3.

6. Conclusions

Application of an external stimulus to the surface at
the frequency (possible complex) corresponding to a sur-
face resonance, be it a subsonic or supersonic leaky wave,
results in a ratio of displacement of the surface layer to
the amplitude of the stimulus tending to infinity for long
times in a close analogy with the true surface wave. How-
ever, the amplitude of the displacement decreases with
time for complex frequencies because the amplitude of
the stimulus also tends to zero in an exponential manner.
The maximum of the displacement in the time domain
corresponds to the lifetime of the surface resonance. The
spatial envelope of the leaky wave, entailed by a stimulus
of frequency adjusted to the surface resonance, is directly
given by the change of variable in Eq. (4) in the case of
a bulk showing linear gapless dispersion relation. In the
contrary case it is plausible to suppose that the overall

Fig. 3. Typical time-domain envelope of leaky wave
produced by force showing damped-oscillating form ad-
justed to the frequency and lifetime of resonance. Spa-
tial envelope can be deduced by inverting the sense of
abscissa according to Eqs. (3) and (4).

shape is qualitatively similar but deformed due to the
dispersion of the wave velocity. Subsonic surface waves
have been recently found by the present authors [9] in
a model of an elastic continuum with a hollowed cylin-
der cavity being a first approximation to the problem of
surface waves in arteries. The physical manifestation of
the subsonic leaky waves in an extra density of states in
the close regions of the bulk bands might be important
for physiological functions of arterial walls along with the
bulk modes on the liquid and solid side of the blood wall
interface [10].
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