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Study of Order Parameters Coupling in Uniaxial Ferroelectrics
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A method is devised of extracting the explicit form of the coupling between the primary and secondary order
parameters with the use of experimental data and respecting classical and non-classical values of the effective
critical exponents. The corresponding equation of state stems from the Ising model on a compressible lattice
treated within the mean field approximation supplemented with terms ascertaining scaling invariance in the
vicinity of the critical point. The theory is exemplified by the molecular ferroelectric crystals (CH3NH3)5Bi2Cl11
(MAPCB) and (CH3NH3)5Bi2Br11 (MAPBB).
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1. Introduction

The full description of the temperature behaviour of
spontaneous values of order parameters in the phase tran-
sitions involve the critical phenomena close to the tran-
sition point, whenever the transition is continuous, and
there is a saturation at lower temperatures. The latter
region is particularly interesting for applications. The
simplest models allow one to construct the required equa-
tions of state but the coupling with a number of sec-
ondary order parameters modifies significantly their pre-
dictions. In the present paper we consider a two-state
pseudospin model, i.e. the Ising model on a deformable
lattice, and show that the knowledge of the temperature
dependence of the primary order parameter determines
the behaviour of the secondary order parameter up to
a single constant and, moreover, allows one to find the
analytical form of the coupling function.

The Ising model [1–5] describes behaviour of materials
undergoing the second order phase transitions. The ther-
modynamics of this model is well known in the vicinity
of the phase transition giving non-classical critical ex-
ponents depending on the dimension of the lattice (for
example see Refs. [4, 5]). When treated within the mean
field approximation, it can be solved at all temperatures
but then gives classical critical exponents. The present
authors will show how to modify the mean field treat-
ment to obtain a critical behaviour compatible with the
scaling hypothesis [5–8] and at the same time the satu-
ration at lower temperatures. The scaling equations of
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state provide a correct description of real materials un-
dergoing the second order phase transitions even if the
full equilibrium is not attained because of a finite rate
of temperature changes (for example see [8–12]). Then
all of materials parameters, as, for example, the ratio of
the inverse Curie–Weiss constants, Γ−/Γ+, the effective
critical exponents, are a result of interplay between static
and dynamical phenomena. Therefore, the corresponding
critical exponents are usually different from those implied
by universality classes because their values result from
the materials properties (as a heat capacity, a relaxation
time, etc.) and from the experimental conditions (as a
finite temperature rate, a measuring frequency, a finite
size of sample, etc.) [10, 13–15].

The main drawback of the Ising model is that the or-
der parameter saturation in temperatures is much slower
than it takes place in real materials [12, 16, 17]. There-
fore, this is an indication that one should take into con-
sideration one more degree of freedom, i.e. a coupling
with a secondary order parameter.

Here we consider an equation of state which involves
the coupling of the electric polarization 〈σ〉, being the pri-
mary order parameter in ferroelectric phase transitions,
with a secondary order parameter, in our case a mechan-
ical strain ε as presented in Sect. 2. Section 3 contains
essential relations resulting from the equation of state.
These results are exemplified by the experimental data
of ferroelectrics MAPCB and MAPBB in Sect. 4.

2. Compressible pseudospin model

The mean field Hamiltonian of a two state Ising pseu-
dospin model on a compressible lattice reads [16]:

(566)
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HMFA = −
∑

i

[J(ε)〈σ〉+ h] σi +
1
2

∑

i

J(ε)〈σ〉2

+
1
2
celε

2 − sε , (1)

σi is the Ising variable at the site number i, 〈σ〉— its av-
erage over all the sites, i.e. the spontaneous polarization,
ε is the strain describing the deformation of the material
entailed by the polarization 〈σ〉. The function J(ε) is a
coupling function and cel — the elastic constant. The
external field h is conjugated to the primary order pa-
rameter 〈σ〉 and s is the stress (the field conjugated to
the secondary order parameter ε). The external fields h
and s, and the elastic constant cel are given in the units
of energy.

Using the Hamiltonian of Eq. (1) one obtains the free
energy density

F ≡ −kT ln

( ∑
σi=±1

exp
(
−HMFA

kT

))
, (2)

which can be written in the explicit form

F (〈σ〉, ε;T, h, s) =
1
2
celε

2 +
1
2
J(ε)〈σ〉2

− kT ln
(

2 cosh
(

J(ε)〈σ〉+ h

kT

))
− sε . (3)

The equilibrium state of the system under external fields
is defined by the necessary conditions of minimum of the
free energy density: ∂F/∂〈σ〉 = 0 and ∂F/∂ε = 0

h = −J(ε)〈σ〉+ kTartanh〈σ〉 (4a)
and

s = celε− 1
2
〈σ〉2 ∂J(ε)

∂ε
, (4b)

where artanh(x) is the area hyperbolic tangent function
of a variable x.

Equations (4a) and (4b) are the equations of state in
the compressible pseudospin model in the mean field ap-
proximation. The explicit form of the coupling function
J(ε) is usually not known. As long as the strain is not
large, ε ¿ 1, the function J(ε) can be approximated by
a power series

J(ε) = J0 + J1ε + J2ε
2 + . . . , (5)

where J0 = kTC is the Ising exchange parameter on a
rigid lattice.

The power expansions of Eqs. (4a) and (4b) in the
variables 〈σ〉 and ε reproduce the Landau equations of
state valid in the vicinity of the critical point, whereas
the full form of these equations describes the behaviour
of the system down to the lowest temperatures.

3. The coupling function and the secondary
order parameter

Knowing the temperature dependences of the sponta-
neous polarization 〈σ〉 and of the mechanical stress ε from
experimental measurements one can obtain the coupling
function J(ε) resulting from Eq. (4a) at the zero field,
h = 0:

J(ε) = kT
artanh〈σ〉

〈σ〉 (6)

and the derivative of the coupling function with respect
to the strain, ∂J(ε)/∂ε, following from Eq. (4b) at zero
stress, s = 0

∂J(ε)
∂ε

=
2celε

〈σ〉2 . (7)

If the elastic constant cel is not known, the function
∂J/∂ε is calculated from Eq. (7) up to a multiplicative
factor.

One more relation between the spontaneous polariza-
tion 〈σ〉 and the spontaneous strain ε can be derived from
the equations of state given by Eqs. (4a) and (4b), where
the coupling function is entirely eliminated. The relation
reads

ε2cel

k
= −T ln

(
(1 + 〈σ〉)1+〈σ〉/2(1− 〈σ〉)1−〈σ〉/2

)∣∣∣
T

TC

+
∫ T

TC

ln
(
(1 + 〈σ〉)1+〈σ〉(1− 〈σ〉)1−〈σ〉

)
dT ′, (8)

where k is the Boltzmann constant. Equation (8) may
serve as a test of the correctness of the assumptions
adopted. One can extract the temperature dependence
of the strain ε directly from the spontaneous polarization
〈σ〉 with the use of Eq. (8). The dependence ∂ε2/∂ T
on the spontaneous polarization 〈σ〉 has been given in
Ref. [16]. However, Eq. (8) requires fewer mathemati-
cal operations than analogous formula given in Ref. [16]
to obtain the strain ε from the spontaneous polarization
data 〈σ〉.

It is well known that the effective critical exponents
may differ from the classical ones inferred by the above
mean field treatment (for example see Refs. [8, 10,
12–14, 17]). In Ref. [17] formulae analogous to those
((2)–(7)) have been given. In what follows we analyze
the experimental data for two ferroelectric compounds
within the present mean field theory.

4. Application to experimental data

The theoretical considerations of previous section will
be exemplified on the uniaxial methylammonium ferro-
electric salts (CH3NH3)5Bi2Cl11 and (CH3NH3)5Bi2Br11
abbreviated MAPCB and MAPBB, respectively. Molec-
ular ferroelectrics MAPCB and MAPBB undergo the sec-
ond order phase transition at TC = 307.65 K [8, 10, 18]
and at TC = 311.52 K [8, 10], respectively. The sym-
metry relation is Pcab→Pca21 in both cases [8, 10, 16].
The mechanism of the phase transitions involves order-
ing of one of three types of the methylammonium cations
[8, 10, 12, 13, 16, 19–21].

Numerous studies of the spontaneous polarization 〈σ〉
confirm the power law behaviour with the non-classical
and at the same time non-universal exponents βeff [8, 10,
12, 22, 23] which are 0.379 ± 0.020 for MAPCB and
0.375 ± 0.020 for MAPBB. The effective exponents
γeff are close to the classical one and they are equal
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to 0.985 ± 0.030 for MAPCB [8–10, 14, 18, 24] and
0.989± 0.030 for MAPBB [8–10, 14, 18, 24].

The pyroelectric current was measured by a KEITH-
LEY 617 electrometer with temperature rate 0.5 K/min.
The dilatometric measurement were performed by a ther-
momechanical analyser Perkin Elmer TMA-7 with tem-
perature scanning rate 4 K/min. The overall errors in
measurements were about 5%. The dimensions of the
samples were of order 5 × 3 × 1 mm3. The preparation
of the crystals and the experimental details are given in
[10, 25].

Figure 1 presents the experimental spontaneous strain
ε for MAPCB (solid curve) and MAPBB (dotted curve).
The spontaneous “pancake” strain ε, defined in Ref. [26]
as ε ≡ −(2ε33 − ε11 − ε22)/

√
3 turns out to be the

strongest spontaneous strain appearing in the low tem-
perature phase [16], has been extracted from the dilato-
metric measurements [27]. The decrease and the sudden
increase of the strain ε below τsat = −0.35 for ferro-
electric MAPCB is connected with an anomaly and an
ordering of another methylammonium cations at 170 K
[16, 19, 20, 26, 28, 29]. The similar anomaly occurs at
77 K for ferroelectric MAPBB [20, 26, 30].

Fig. 1. Experimental dependences of the strain ε on
the reduced temperature τ below the phase transition
points at zero biasing field and stress-free samples for
ferroelectrics MAPCB (solid curve) and MAPBB (dot-
ted curve).

Figures 2a and 2b show some experimental data (open
rhombus) of the spontaneous polarization 〈σ〉 for ferro-
electrics MAPCB and MAPBB, respectively. The solid
curves are results of the solution of Eqs. (4a) and (4b) at
zero biasing fields, h = 0 and s = 0, with the coefficients
presented in Table. As one can see, the agreements be-
tween experimental and theoretical curves are very good
for both molecular crystals as well close to the phase
transition points TC as far below these points. The coef-
ficients J0, J1 and J2, given in Table, have been obtained
on the basis of Eqs. (5), (6) and on the spontaneous po-
larization data for both molecular crystals.

The theoretical quantities εc
1/2
el divided by square root

of Boltzmann’s constant k obtained from Eq. (8) are
shown in Fig. 3 for MAPCB (solid line) and MAPBB
(dotted line). Comparing dependences of the strains ε

Fig. 2. Some experimental points and fitted curves to
the data of the spontaneous polarization 〈σ〉 for (a)
MAPCB and (b) MAPBB crystals. Fitted parameters
are given in Table.

Fig. 3. Theoretical quantity εc
1/2
el multiplied by factor

k−1/2 obtained from measurements of the spontaneous
polarization 〈σ〉 for ferroelectrics MAPCB (solid curve)
and MAPBB (dotted curve).

on the temperature, shown in Fig. 1, with the tempera-
ture dependences of εc

1/2
el , shown in Fig. 3, one gets the

values of the elastic constants c
(1)
el , presented in Table,

for both crystals. The obtained elastic constants c
(1)
el are

weak-temperature dependent therefore we gave the mean
values of them. Moreover, the elastic constants c

(2)
el , ob-

tained by comparing the dependences J(ε) and ∂J/∂ε,
are also shown in Table for MAPCB and MAPBB. The
resulting elastic constants are of order 1010÷1011 N m−2

and they are plausible for a macroscopic strains [16].
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TABLE
Parameters of coupling function J(ε) and elastic constants
obtained in two different ways: c

(1)
el — from comparison of

experimental spontaneous strain εexp(τ) with theoretical
quantity εtheo(τ)c

1/2
el obtained from spontaneous polariza-

tion data, and c
(2)
el — from comparison of dependences J(ε)

and ∂J/∂ε. All of presented parameters are given in units
of temperature.

MAPCB MAPBB
J0/k [K] 307.65± 0.03 311.52± 0.03

J1/k [K] (1.30± 0.07)× 105 (2.49± 0.13)× 105

J2/k [K] (5.68± 0.28)× 106 (1.43± 0.07)× 106

c
(1)
el /k [K] (1.47± 0.07)× 107 (1.97± 0.10)× 107

c
(2)
el /k [K] (1.01± 0.05)× 107 (1.93± 0.10)× 107

There are no experimental values of the elastic constants
cel for these ferroelectric materials in the literature as
yet. Therefore, the obtained theoretical elastic constants
c
(1)
el and c

(2)
el , in two different ways, cannot be compared

to any adequate experimental quantities.

5. Conclusions

The coupling of the spontaneous polarization 〈σ〉 (gen-
erally the primary order parameter) with the mechanical
strain ε (generally the secondary order parameter) causes
that the primary order parameter 〈σ〉 gains the satura-
tion region much faster than it would happen without
the presence of the order parameters coupling [16, 17].

The dependence of the secondary order parameter on
the primary order parameter follows from the equations
of state in the compressible pseudospin model. There-
fore, one can correctly identify right physical quantity as
the secondary order parameter. Moreover, obtaining the
agreement between experimental and theoretical curves
of the secondary order parameter confirms that the com-
pressible pseudospin model can be used to describe the
behaviour of real materials.

The values of the elastic constant cel can be obtained
in two different ways as it has been done in Sect 4. As
it has been shown, one needs only experimental data of
the spontaneous polarization 〈σ〉 and of the spontaneous
strain ε to obtain the elastic constant cel and a form of
the coupling function J(ε).
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