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Lifetime Broadening of a Nuclear Magnetic Resonance Peak
under Minimal Length Uncertainty Analysis
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We calculate the lifetime broadening of a nuclear magnetic resonance peak based on the minimal length
uncertainty. The application of high resolution nuclear magnetic resonance spectroscopy and its extension to
detection of the signature of minimal length scale is explored. We show that in a high precision spectrometry test,
the lifetime broadening is a quadratic function with energy.
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1. Introduction

It is expected that some low energy relics of high en-
ergy phenomena may be verified by nowadays experi-
ments, and some phenomenological low energy effects
may be explored in solvable models at a level of quantum
mechanics in a minimal length scale [1–9]. In literature,
the minimal length quantum mechanics have been exten-
sively studied [10, 1, 2]. In this letter we study the possi-
bility of testing minimal length scale via nuclear magnetic
resonance spectroscopy taking into account the solution
of broadening of a magnetic resonance peak by minimal
length uncertainty. One manifestation of the uncertainty
principle is the effect of decreasing the lifetime of a nu-
cleus in a given environment on the nuclear magnetic
resonance spectrum of the same nucleus or one to which
it is coupled. These kinetic effects may have experimen-
tal significance by giving rise to spectra whose shift-state
values or line widths may be used as a measure, or to
spectra which are simplified so that the resonances are
more suitable for quantitative measurements. The shift-
ing and merging of spectra by kinetic process may also
be used to shift an increasing resonance away from a res-
onance of interest if the interfering species can be made
to undergo rapid exchange.

The magnitude of the effect can be estimated from un-
certainty principle, ∆E∆t ≥ ~. Since ∆E = ~∆ν and
∆t may be identified with τ , the average lifetime of the
excited state in the various exchanging states, the rela-
tionship becomes τ∆ν ≈ 1/2π. Thus the magnitude of
the rate constant that will give an observable effect will
vary for different types of spectrometry, depending on
the frequency difference involved. The widest application
of this principle has been in nuclear magnetic resonance
spectrometry, especially proton NMR. When a system
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under observation by NMR is undergoing slow change
between different environments, separate resonances are
observed for each environment. At higher rates of ex-
change, the resonances are broadened and shifted toward
each other, and with fast exchange, a single resonance
is observed at a position which is a weighted average of
the positions and relative population of various environ-
ments. In order to all effects that cause to broadening of
peaks, there is a new effect that acts as a constraint on
the broadening of peaks, this effect rises from the exis-
tence of a minimal length uncertainty [3].

2. Theory

Let line broadening is due to the lifetime broadening,
since absorption of the radiation aL(w)ays produces an
excited state with a finite lifetime. What is the relation
between lifetime and broadening of spectra? To obtain
the answer we describe the kinetic decay of an excited
state using an exponential function. This emerges di-
rectly from the first order kinetics. Looking ahead, this
means that if we define the rate of disappearance of the
excited state E as

∂[E]
∂t

= − [E]
T2

, (1)

Eq. (1) could be solved analytically as
E(t) = E0 e−t/T2 , (2)

where T2 is the excited state lifetime. Conjugated energy
width can be obtained from the Fourier transformation
of the lifetime function,

L(w) =

√
2
π

∫ ∞

0

exp
(
−

(
1
T2

+ iw
)

t

)
dt . (3)

Solution of Eq. (3) reads

L(w) =

√
2
π

1
T−1

2 − iw
, (4)

which is a complex function. The imaginary and real
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parts of Eq. (4) may be solved by multiplying both nu-
merator and denominator by T−1

2 + iw that gives

Lw =

√
2
π

[
T−1

2(
T−1

2

)2
+ w2

+
iw(

T−1
2

)2
+ w2

]
. (5)

The real part of this integral is a Lorentzian line shape
function. This line shape will be observed for transitions
that have only homogeneous broadening. Let us note
that we have used T2 as the relaxation time; this brings
up the important analogy between optical spectroscopy
and NMR spectroscopy. The relaxation time T2 has two
components T1 and T ∗2 as the lifetime of state or longi-
tudinal relaxation time and transverse relaxation time,
respectively. The lifetime contributes to the relaxation
time by decreasing the population of the excited state.
Pure de-phasing contributes to the T2 relaxation time
by destroying coherence between the ground and excited
states

Λ(w) =
T−1

2

π
((

T−1
2

)2
+ w2

) . (6)

It is interesting to obtain the relation between the relax-
ation time and the line width. The Lorentzian that we
have discussing so far is centered about zero frequency.
The maximum is

Λ(0) =
T2

π
. (7)

At the half-maximum we obtain the highest as
Λ0

2
=

T2

2π
(8)

and the width at half-maximum is determined by solving
T−1

2

π
((

T−1
2

)2
+ w2

) =
T2

2π
. (9)

Solution of (9) yields
w = ±T−1

2 . (10)
The width Γ is known as the full-width at half-maximum
(FWHM). It is easy to see that Γ = 2/T2, which corre-
sponds to a homogeneous Lorentzian line width, where
T2 = 2T1 and Γ = 1/T1. As an important and well
founded result, the line width is related to the excited
state lifetime. Using the uncertainty principle ∆ET1 ≈ ~
we can write

T1Γ ≈ 1 , ∆E = ~Γ , (11)
where T1 alone is responsible of relaxation. Let us con-
sider the effect of minimal length uncertainty on Eq. (11).
An exciting quantum mechanical implication of the mi-
crophysics space is a modification of the uncertainty prin-
ciple as

∆x ≥ ~
∆p

+ α′
∆p

~
, (12)

where
√

α′ is the Planck length. From Eq. (12) it is easy
to obtain a similar relation between time and energy as
(for details see [3]):

∆t ≥ 1
∆E

+ t′∆E. (13)

Let us note that in (13) we have used the natural units
α′, c, ~ = 1. Combining (11) with (13) and substituting
∆t with T1 we obtain

Γ−1 ≥ 1
∆E

+ t′∆E (14)

and
t′∆E2 − Γ−1∆E + 1 ≈ 0, (15)

Eq. (15) can be solved as

∆Emin ≈ Γ
2t′

(
1−

√
1− 4t′

Γ 2

)
. (16)

Expanding (16) around t′ = 0, we obtain,
∆Emin ≈ Γ + t′(Γ 3) + . . . (17)

Comparing Eq. (17) with Eq. (11), it is easy to see that
the first term of the right hand side of Eq. (17) is the
standard line width (note that in (17) we have used a
system in which ) of an excited state and the other terms
are the signature of the minimal length uncertainty on
the lifetime broadening of a NMR peak.

3. Summary

The above consideration is generalized the nuclear
magnetic resonance spectroscopy for a NMR test experi-
ment with a high precision experiment. The typical size
of this correction in an actual system is 10−3%.
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