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On the Scattering of Neutron in the Magnetic Field
of 180◦ Bloch Wall
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The exact solution of the Pauli equation has been derived for neutron wave propagating in magnetized
continuum containing the magnetization non-uniformity such as the 180◦ Bloch wall, whose structure corresponds
to the Landau–Lifshitz model. The scattering coefficients with and without neutron spin flip are presented as
functions of ratio of neutron energy to the media’s magnetic induction value. The possibility of narrow (<∼ 100 Å)
domain wall width measurement is discussed by the example of YFe11Ti alloy.
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1. Introduction

The problem of magnetic interaction of neutron with
the domain wall (DW) in a ferromagnet attracted the re-
searches attention more than once. The reason is that
the scattering coefficients, other parameters being equal,
depend on the DW width δ whose parameter knowledge
is important for physics of ferromagnetism, as the fun-
damental characteristic of material named the exchange
stiffness constant ([1], p. 102) depends on δ value di-
rectly. Calculating, for example, transmittance coeffi-
cients for some or other wall magnetization law as func-
tions of δ, one can evaluate the real value of δ for this
ferromagnetic material, fitting those calculated values to
measured transmittance data [2]. The elementary calcu-
lations were presented in [3] where the neutron was con-
sidered as a classical particle whose magnetic moment
vector precesses under the influence of the DW magnetic
field. In a classical approximation they can derive only
transmittance coefficients for neutron with and without
flip, its sum is equal to one, whereas the reflection phe-
nomena are ignored. The quantum-mechanical descrip-
tion of the neutron scattering on DW (in particular on
the 180◦ DW) which is free of this shortcoming was exe-
cuted in [4]. In this work the authors, similarly as in [3],
used the one-helix approximation of the wall magnetiza-
tion law. By this, the magnetization vector M rotates
harmonically between two parallel planes which form an
imaginary slab and M is considered as a permanent vec-
tor out of this slab. Such model is rather far from the real
DW structures, the different types of which depending on
the material’s magnetic anisotropy are considered in [1].
Authors of [5] numerically solved the Pauli equation for
the Landau–Lifshitz wall magnetization law which corre-
sponds to the DW in a ferromagnet with only the second-
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-order uniaxial anisotropy [1]. The matrix method of the
solution of Pauli equation was used in [5], which is given
a detailed account in [6]. In [5] they presented the re-
sults only for the particular case δ = 2631 Å and the
saturation induction value Bs = 19.7 kGs the last value
corresponds to Fe + 4 at% Si alloy at the room tem-
perature. Thus the progress in the scattering problem
solution has been developed by the numerical methods
loss of simplicity. Meanwhile the simple exact analyti-
cal solution of the problem calculated in [5] exists and is
presented below.

2. Formulation of the problem

Let us consider the disk cut from the uniaxial ferromag-
net monocrystal so that its easy axis lies in the disk sur-
face plane. In such a geometry the row of ideally parallel
domain walls was observed [7] from which we will con-
sider only one wall separating two domains called as the
domain 1 (left) and the domain 2 (right) (Fig. 1). Ferro-
magnetic medium has the saturation magnetization Ms,
the exchange stiffness constant A and the second-order
anisotropy constant K1 > 0. Let y be the coordinate
orthogonal to DW plane and z — the one parallel to the
easy axis. If θ(y) is the magnetization vector M(y) polar
tilt angle from the axis Oz, then the magnetic induction
value of a Bloch DW in the one-dimensional approxima-
tion is

B(y) = 4πM(y) = Bs(− sin θ · e1 + cos θ · e3) . (2.1)
Here Bs = 4πMs, ej (j = 1, 2, 3) are the unit vectors of
a given coordinate system and M(y) polar longitude is
equal to π elsewhere. In the Landau–Lifshitz model

cos θ = − tanh(y/d) , sin θ = 1/ cosh(y/d) , (2.2)
where d =

√
A/K1. The quantity δ = πd is called the

domain wall width [1].
The neutron wave propagating in a ferromagnet inter-

acts with the atom nucleus and the magnetic moments
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Fig. 1. The geometry of problem. sz is the projection
of the vector of neutron spin on Oz axis. (µn)z is the
projection of the vector of neutron magnetic moment on
Oz axis.

of atom’s electron shells. In the neutron optics approx-
imation the nuclear forces potential Ûnucl = Un = const
and the magnetic interaction potential

Ûmagn = −µ̂n ·B(r) . (2.3)
Here µ̂n = µn · σ̂ is the operator of magnetic moment
of neutron, µn = −9.66× 10−24 erg/Gs is its magnitude
and σ̂(σ̂x, σ̂y, σ̂z) are the Pauli spin matrices. Let us in-
troduce the parameter U = Bs|µn|. Then

Ûmagn = U · σ̂(− sin θ · e1 + cos θ · e3) . (2.4)
Consider the spin-down neutron of mass m with the

wave vector K0 in vacuum impinging the disk at little
angles to the planes Oxz and Oyz simultaneously. Then
the neutron total energy W = ~2K2

0
2m = ~2K2

2m − U + Un =
W1 + Un, where K is its wave vector after the incidence
on surface. By this the Pauli equation for neutron is

− ~
2

2m

(
d2

dy2
+

d2

dz2

)
Ψ(y, z) + ÛmagnΨ(y, z)

= W1Ψ(y, z) , (2.5)

where Ψ(y, z) = e iKzzψ(y) = e iKzz

(
ϕ(y)
χ(y)

)
is the

wave function of neutron, Kz = K cos α, α is the glanc-
ing angle (Fig. 1, K0 lies in plane Oyz for simplicity).
Dividing the variables in (2.5), we obtain

d2ψ

dt2
1
d2

+
2mU

~2

(
σ̂x cosh−1 t + σ̂z tanh t

)
ψ

= −2m

~2
E−ψ , (2.6)

where t = y/d is the dimensionless coordinate variable
and E− = W1 − (W1 + U) cos2 α is the total energy of
the normal motion in respect of DW. Putting the dimen-
sionless variables w = W1/U , ε− = E−/U , we come to
the equality

ε− = w sin2 α− cos2 α . (2.7)
Let us introduce the dimensionless parameter of the fer-
romagnetic material q = 4mUδ2/~2. The y-projection
ky of the wave vector k at y < 0, multiplied by d/2, is

written as

ky =

√
q (ε− + 1)

8π2
=

√
q (w + 1)

8π2
sin α . (2.8)

If E− > U , then spin-down neutron may pass through
the wall without flip and so at y → +∞ the dimension-
less y-projection of the wave vector will be equal to

k′y =

√
q (ε− − 1)

8π2
=

√
k2

y −
q

4π2
. (2.9)

(The corresponding dimensional wave number will be sig-
nified as K ′.) Using the designations introduced in this
paragraph, one can write down the solution of (2.6) in a
compact form.

3. The solution of the Pauli equation

Further, the quantities ky, k′y, ε− and ε+ will be writ-
ten without bottom indexes where it is possible. We
will solve the matrix Eq. (2.6) nearly as in Ref. [8]
where the author solved the problem of the scalar parti-
cle scattering on the potential barrier U(t) ∼ const(1 +
tanh t), although the concrete mathematical transforma-
tions are some other. Namely let s = −e−2t, ψ(t) =

(−s)−ik

(
f(s)
g(s)

)
, ∆̂ = s d

ds , a1 = − i(k + k′), a2 =

− i(k − k′), a = −2ik and a′ = −2ik′. Substituting
the bottom component of (2.6) into the upper one we
will obtain[

∆̂
(
∆̂ + a1 − 0.5

)(
∆̂ + a2 − 0.5

) (
∆̂ + a

)

− s
(
∆̂ + a1

)(
∆̂ + a2

) (
∆̂ + a + 0.5

)(
∆̂ + 0.5

)]

× f(s) = 0 . (3.1)
The set of fundamental solutions of (3.1) is known ([9],
p. 190): these are the generalized hypergeometric func-
tions. In particular, near s = 0, which corresponds to
the domain 2 area in Fig. 1,

f1(s) =

4F3

(
a1, a2, 0.5 + a, 0.5

0.5 + a1, 0.5 + a2, 1 + a

∣∣∣∣∣ s

)
, (3.2)

f2(s) = (−s)1/2s−a2 f̃2(s) = (−s)1/2s−a2

× 4F3

(
1 + a1, 1− a2, 0.5 + a′, 0.5

1.5 + a1, 1.5− a2, 1 + a′

∣∣∣∣∣ s

)
,(3.3)

f3(s) = s−af∗1 (s) , f4(s) = s−af∗2 (s) , (3.4)
where * denotes complex conjugation. To derive the sec-
ond component of spinor ψ, let us return to upper com-
ponent of (2.6) which gives

g(s) =
(−s)−1/2

a1a2

×
[
∆̂

(
∆̂ + a

)
− s

(
∆̂ + a1

)(
∆̂ + a2

)]
f(s) . (3.5)
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At |s| < 1, the generalized hypergeometric function may
be represented as a convergent series by the s degrees.
The substitution of four corresponding series into (3.5)
gives the following series for the lower components of
spinors:

g1(s) = (−s)1/2(AC)g̃1(s) = (−s)1/2(AC)

× 4F3

(
1 + a1, 1 + a2, 0.5 + a, 0.5

1.5 + a1, 1.5 + a2, 1 + a

∣∣∣∣∣ s

)
,(3.6)

g2(s) = s−a2(AC∗)−1g̃2(s) = s−a2(AC∗)−1

× 4F3

(
a1, −a2, 0.5 + a′, 0.5

0.5 + a1, 0.5− a2, 1 + a′

∣∣∣∣∣ s

)
,(3.7)

g3(s) = s−ag∗1(s) , g4(s) = s−ag∗2(s) , (3.8)
where A = 1/(0.5+a1), C = a1a2/(0.5+a2). Afterwards
for the area of left domain it is necessary to understand
the formulae (3.6)–(3.8) as formulae for the analytical
continuation of the generalized hypergeometric series.

Returning to dimensional coordinate and wave number
and multiplying for convenience functions ψ2–ψ4 by some
complex constants, one can extract finally the solutions
of (2.5) as the modulated de Broglie waves

ψ1(y) = e iKy

(
f1(−e−2y/d)

AC e−y/dg̃1(−e−2y/d)

)
, (3.9)

ψ2(y) = e iK′y

(
AC∗ e−y/df̃2(−e−2y/d)

g̃2(−e−2y/d)

)
, (3.10)

ψ3(y) = ψ∗1(y) , ψ4(y) = ψ∗2(y) . (3.11)
By the physical sense of problem, the neutron wave has
to satisfy the boundary conditions in the infinity region
(really in the depth of domains 1 and 2):

ψ(−∞) =

(
r+− e− iK′y

e iKy + r−− e− iKy

)
, (3.12)

ψ(+∞) =

(
t+− e iKy

t−− e iK′y

)
, (3.13)

where r+− is the reflection amplitude with spin-flip, t−−
is the transmission amplitude without spin-flip and so on.
Here the right subscript denotes the initial polarization.
Among the derived solutions (3.2)–(3.11), the spinors
ψ1 and ψ2 have the asymptotic behaviour at y → +∞
according to (3.13). By means of formula connected
with the analytical continuation of hypergeometric func-

tion 4F3

(
(a4)
(b3)

∣∣∣∣∣
1
s

)
at |s| < 1 and the hypergeomet-

ric functions 4F3

(
1 + ak − (b3), ak

1 + ak − (a4)′

∣∣∣∣∣ s

)
(see [9], p. 179,

here k = 1 . . . 4, little brackets signify the correspond-
ing set of indexes, little brackets with stroke signify the
set of indexes with omitting 1 as result of calculations of
1 + ak − aj , j = 1 . . . 4), one can fit the number Q(k, k′),
so that the spinor

ψ(y) = [ψ1(y) + Q(k, k′)ψ2(y)]× const (3.14)
asymptotical behaviour will be corresponding to (3.12)
not only to (3.13). The calculations gives

Q = − a2

sinπa2

× Γ 2 (−a2)Γ (1 + a)Γ (0.5 + a′)
Γ 2 (0.5− a2)Γ (0.5 + a)Γ (1 + a′)

. (3.15)

Finally we have:
(a) the transition coefficient for neutron without spin-flip

T−− =
k′

k
|t−−|2

=
tanh 2πk tanh 2πk′

tanh2 π (k + k′) cosh2 π (k − k′)
, (3.16)

(b) the transition coefficient with spin-flip

T+− = |t+−|2 =
(

tanh π (k − k′) tanh 2πk

tanh π (k + k′)

)2

, (3.17)

(c) the reflection coefficient without spin-flip

R−− = |r−−|2 =
(

tanh π (k − k′)
cosh 2πk tanh π (k + k′)

)2

, (3.18)

(d) the reflection coefficient with spin-flip

R+− =
k′

k
|r+−|2

=
tanh2 π (k − k′) tanh 2πk tanh 2πk′

sinh2 π (k + k′)
. (3.19)

The sum of these four coefficients is equal to one identi-
cally, which may be verified by means of the elementary
trigonometry methods.

When ε− < 1, the principle of conservation of en-
ergy forbids both the transmission process without flip
and the reflection process with flip. It is manifested
itself mathematically in the fact that the value k′ be-
came imaginary. To satisfy the normalization conditions
on ψ-functions it is necessary to choose k′ = i |k′|, not
k′ = − i |k′|. Then the multipliers at r+− and t−− co-
efficients in (3.12)–(3.13) became equal to zero and only
two coefficients of four were still necessary to describe
the scattering phenomena. The substitution k′ → i |k′|
in the formulae (3.17)–(3.18) yields

T+− = tanh2 2πk, R−− = 1/ cosh2 2πk . (3.20)
Now let the particle’s initial polarization is directed along
the Oz axis (spin-up neutron). The previous designations
will be conserved, namely k is the neutron wave number
in the left domain and k′ is the neutron wave number
after passing of DW without flip. So the energy of the
normal motion in respect of DW will be

E+ = W1 − (W1 − U) cos2 α ,

ε+ = E+/U = w sin2 α + cos2 α , (3.21)
and consequently

k =

√
q (w − 1)

8π2
,
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k′y =

√
q (ε+ + 1)

8π2
=

√
k2

y +
q

4π2
, (3.22)

and the next commutations must be executed in
(3.1)–(3.9): a2 → −a2, a → a′, a′ → a. The wave
function asymptotics for spin-up neutron in the infinity
regions must be

ψ(−∞) =

(
e iKy + r++ e− iKy

r−+ e− iK′y

)
,

ψ(+∞) =

(
t++ e iK′y

t−+ e iKy

)
. (3.23)

To derive such the wave function one needs to compose
the other linear combination of the fundamental solutions
(3.9)–(3.10):

ψ̃(y) = [ψ1(y) + Q′(k, k′)ψ2(y)]× const , (3.24)
with a new constant Q′. After some simple although
bulky calculations we obtain

Q′(k, k′) = − 1
Q(k′, k)

. (3.25)

It gives for the scattering coefficients R++, T−+, T++,
R−+ the expressions formally having the same right parts
as in (3.16)–(3.20) correspondently, but with due regard
for formulae (3.22) instead of (2.8)–(2.9). One can men-
tion that the transformation of M(y) polar longitude to
zero in Fig. 1 leads to the wave function transformation(

ϕ

χ

)
→

(
ϕ

−χ

)
which does not influence the scatter-

ing coefficients.

4. Discussion

The coefficient R+− being considered as a function of
the two variables ε and q, has an absolute maximum
R+−(ε) = 0.074 at ε = 1.09, q = 2.8 (Fig. 2). This
seems to be too little value to observe the phenomenon
in the experiment at any parameters of ferromagnet and
will not be discussed further.

At ε− = 1 the formulae (3.20) give T+−(ε− = 1) =
tanh2√q. If √q À 1 (“thick” wall), the reflection of
neutron is practically lacked. Such a situation is re-
alized in the alloy Fe + 4%at. Si where δ > 1000 Å
for 180◦ walls [2] and so √

q(r.t.) ≈ 10 (r.t. = room
temperature). The equations T+−(ε−) = T−−(ε−) and
T++(ε+) = T−+(ε+) in that case both have the approxi-
mate solution ε ≈ q/8, which defines the energy interval
for which DW effectively rotates the spin of passing neu-
tron (Fig. 3).

If √q ¿ 1 (‘’narrow” wall) then T+−(ε− = 1) = q,
R−−(ε− = 1) = 1 − q. Both quantities are sensitive to
DW width but the reflection coefficient is considerably
higher.

The coefficients R−−(ε) and R++(ε) are presented in
Fig. 4. At ε > 1 both are decrease quickly with the ε
increasing, by this the speed of decreasing depends of δ
value slightly.

Fig. 2. The dimensionless energy dependence of reflec-
tion coefficient with spin-flip (Bs = 19700 Gs in all fig-
ures here and further). 1 — δ = 100 Å, 2 — δ = 155 Å,
3 — δ = 250 Å. R+−(ε) = R−+(ε).

Fig. 3. The dimensionless energy dependence of trans-
mission coefficients. The broken lines correspond to δ =
1000 Å. The continuous ones correspond to δ = 500 Å.
When ε > 3, graphics of T−+(ε) and T+− (ε) practically
coincide with each other. T−−(ε) = T++(ε).

As a specific example let us consider the alloy YFe11Ti.
In that alloy according to [10] the Curie temperature
Tc = 540 K, K1(r.t.) = 0.85×107 erg/cm3 and K2(r.t.) <
0.1K1(r.t.). For neutrons with λ = 10 Å, ε− = 1 when
α = 45′ what is seems to be the observable value. Let
us evaluate DW width very roughly from the formula
δ = const×

√
kTc/aK1 (a = middle interatomic distance

between the adjacent Fe atoms inside the crystal lattice)
which is followed from the formula δ = π ×

√
A/K1 and

from consideration of dimensionality. Comparing the
two crystal lattices YFe11Ti and Fe14Nd2B for second
of which all the parameters are known [11] and consid-
ering that constanta in formula for δ is just the same
we obtain for YFe11Ti δ ≈ 100 Å. Then √

q = 0.80
and R−−(ε− = 1) = 0.56. Wish it will be, for ex-
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Fig. 4. The dimensionless energy dependence of re-
flection coefficients without spin-flip. 1 — R++(ε):
δ = 320 Å, 2 — R−−(ε): δ = 80 Å, 3 — R−−(ε):
δ = 20 Å.

ample, δ = 80 Å, then √
q = 0.65 and consequently

R−−(ε− = 1) = 0.67. The simplest calculation shows
that the presence of domains with magnetization directed
parallel to neutron spin in the specimen leads to only
small correction in the formula for reflection coefficient
for neutron beam R(δ) = (R−−(ε) + R++(ε))/2. Thus
these facts may be the state of experiment in which the δ
value is defined not from transmission data as in [2] but
using the neutron reflection data from DW.

5. Conclusion remarks

To what degree the derived formulae are useful for the
experimental physics? First of all, accordingly (2.3) the
scattering will be noticeable for the ferromagnets with
the magnetization as high as possible. The iron inter-
metallic alloys far from the Kurie point T ¿ Tc con-
trary, for example, to the uniaxial ferrites comply this
requirement. However many of such alloys have the val-
ues of high anisotropy coefficients comparable with K1

at T ¿ Tc namely. It makes impossible the application
to them the Landau–Lifshits model. The alloy YFe11Ti
is the unique exception from that rule. According to [10]
there exist the temperature interval 300 K < T < 400 K
where it’s magnetization is still comparable with the
zero-temperature one (Bs = 11.2 kGs) but all the high
anisotropy coefficients drops to zero. So we have at least
one model material for the exact determination of the
domain wall width measuring the reflection of neutrons
from DW. In addition there is no the neutron absorp-
tion for YFe11Ti contrary to pure Co and the metodics
of monocrystal growing has been develop for it contrary
to ordered FePt.

Finally there are uniaxial ferromagnetic alloys such as
YFe11Ti for which the results of present article offer in
principle to stand the experiment for evaluation the ex-
change stiffness constant in such alloys, measuring the
reflection of neutrons from DW.

As for alloys with the complex anisotropy, the
Landau–Lifshitz model and consequently the formulae
(3.16)–(3.20) are the approximation to be compete the
one-helix model of DW used in this branch of physics
earlier. Namely, it may be more applicable if the sur-
face DW energy value σ1 minimizing the energy func-
tional of ferromagnet on the set of trial functions (2.2)
with δ as a free parameter is closer to its exact value
than the σ2 one minimizing it on the set of trial func-
tions θ(|y| < δ/2) = π/2 − πy/δ, θ(|y| ≥ δ/2) = const.
For the alloy Fe + 4%at. Si used in [2], for which the
energy functional takes place

σ =
∫ +∞

−∞

(
A

(
dθ

dy

)2

+ K sin2 θ cos2 θ

)
dy , (5.1)

([1], p. 105; the magnetostriction energy governing the
δ value in FeSi practically does not disturb the surface
energy value) the simplest calculation gives σ1 > σ2 and
the one-helix approximation of DW structure used there
seems to be optimal.
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