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Kinetics of Charge Transport in Wide-Band Semiconductors
at the Detection of X-Ray Radiation
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As a result of absorption of X-ray quantum in a semiconductor, the generation of electron-hole pairs takes
place in a small volume (diameter < 0.5 µm). Their surplus energy is lost due to the scattering on phonons of
the crystal lattice. Spatial distribution of the charge carriers makes the form of current pulse on electrodes of
the crystal complicated when an external electric field is applied. We present a logical chart of construction of
basic kinetic model of X-ray conductivity (XRC) in semiconductors that uses the successive in time calculation of
the spatial distribution of free charge carriers and the diffusive-drift model of motion of free carriers in a solid.
The basic form of current pulse in an external circle was obtained in the analytical kind for the case of an ideal
semiconductor, e.g. that does not contain deep traps and recombination centers, as well as for the case of a crystal
with dominant shallow or deep traps of electrons and holes.
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1. Introduction

Today, semiconductor materials are most widely used
for application in detectors of ionizing radiation. Ad-
vantage of semiconductor detectors over other systems of
detection (scintillation, track detector) is a direct trans-
formation of energy of ionizing radiation into electric
current that allows them to be successfully applicable
in spectrometry investigations and applied problems of
radiometry [1–3]. However, successful practical applica-
tion of semiconductor materials in detectors of ionizing
radiation is not strengthened by theoretical models of
kinetics of radioconductivity. Experimental investiga-
tions of X-ray conductivity (XRC) and X-ray lumines-
cence (XRL) of wide-band semiconductors, particularly,
of zinc selenide [4–6], indicate significant complexity of
the processes caused by detection of ionizing radiation
in solids. Moreover, explanation for many experimental
facts is impossible in the frame of classical theories of
conductivity and charge transport with consideration of
the band theory of solids.

We propose to start the construction of kinetic model
of radioconductivity of semiconductors with considera-
tion of the as simplified as possible physical picture and
to complicate it gradually step by step approaching the
real picture. Also, it is reasonable to begin the consid-
eration for ionizing radiation, which does not create new
structural defects in the material of detector. Starting
from these circumstances, let construct the kinetic model
of XRC for an ideal crystal without recombination cen-
ters and traps. Then, having the dependence of the form

∗ corresponding author; e-mail: degoda@univ.kiev.ua

of current pulse on diffusive-drift parameters of motion
of carriers, one could do the following step — the con-
sideration of influence of shallow and deep traps on cur-
rent pulse and collection efficiency of charges and, con-
sequently, on detector response function at the detection
of ionizing radiation.

2. The X-ray conductivity of an ideal crystal
without recombination centers and traps

2.1. Model for kinetics of X-ray conductivity

In experimental investigations of XRC and XRL, big
number of excitation quanta (> 106) always takes part.
They are inhomogenously absorbed in the material. Ab-
sorption of X-ray radiation is determined by the Burger–
Lambert law like at photoexcitation that causes macro
inhomogeneity of electronic excitations in the crystal.
But, unlike photoexcitation, absorption of X-ray quan-
tum is assisted by generation of thousands of charge car-
riers. That is why the local excitation inhomogeneity
occurs at X-ray illumination. For the construction of the
basic model of XRC let take into account only basic pro-
cesses and use the following assumptions:

• absorption of X-ray quantum does not result in cre-
ation of new structural defects in material of detec-
tor;

• free charge carriers are generated in the very small
volume of semiconductor [7] and number of the gen-
erated pairs (N0) is determined by energy of X-ray
quantum (hνX) and by band-gap energy of semi-
conductor (Eg) [8, 9]:

(155)
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N0 ≈ hνX

3Eg
; (1)

• initial spatial distributions of electrons and holes
are identical;

• electric field in a semiconductor is homogeneous
and determined by enclosed difference of potentials
on electric contacts and by thickness of the sample.

The phenomenological formula (1) obtained experi-
mentally in the investigation of the energy quantum
yields X-ray luminescence [9]. It was found that 2/3
of the photoelectron energy is transported into heat
(phonons generation) and only 1/3 of the energy goes
for the electron-hole pairs generation.

As soon as the rates of different processes of XRC are
different, the kinetics of XRC in general case can be di-
vided in three basic stages in time:

1. Generation (t = 0–10−12 s), when absorption of
X-ray quantum and appearance of high-energy elec-
tron take place. This high-energy electron gener-
ates the initial average spatial distribution of N0

free electrons and P0 free holes (N0 = P0).

2. Migration (t = 10−11–10−6 s), when the spatial dis-
tribution of free carriers is changing due to their
diffusion-drift motion (localization of carriers on
the possible recombination centers and traps, de-
localization from shallow traps).

3. Relaxation (t > 10−5 s), when delocalization of car-
riers from deep traps occurs and the carriers can be
repeatedly localized at the recombination centers or
traps, or attain the contacts under the action of the
external field with a large time-lag creating in this
way constant background current.

The time boundaries of the stages are quite relative
and can be changed even by several orders depending
on the semiconductor material, the external electric field
value and the sample thickness. Such division in the
stages allows considerable simplifying of calculations be-
cause in every stage, only several processes prevail.

It is possible to apply the following logical chart of con-
struction of the XRC kinetics. At first, let determine the
form of current pulse in an external circle at absorption
of one X-ray quantum in an ideal semiconductor without
recombination centers and traps. This form of pulse will
be the start point for the subsequent account of different
type of centers, which will change this pulse. Later on, it
is necessary to take into account Coulomb interaction be-
tween the free carriers of the opposite charge. After this,
it is possible to enter the point defects in material —
firstly, shallow traps, then to carry on with consideration
of deep traps and recombination centers.

Introduction of point defects in the calculation system
will allow to obtain kinetics of change of the spatial dis-
tributions of free carriers and so, to obtain change of the

form of current pulse. Having a form of current pulse at
absorption of one X-ray quantum, it is possible to esti-
mate the charge collection efficiency. Summation of indi-
vidual pulses will allow to determine the general current
of XRC.

2.2. Generation and thermalization
of free charge carriers

At interaction of X-ray quantum of energy 1÷ 50 keV
with a solid, the basic processes are absorption, ioniza-
tion of ion and appearance of high-energy electron. This
electron creates on the average N0 of electron–hole pairs
in a local volume due to the ionization losses of kinetic
energy in thermalization process (10−13–10−12 s). Ap-
plying the diffusion model of thermalization of electron,
it is possible to get the average spatial distribution of con-
centration of generated free charge carriers N0(r), which
is well described by the Gaussian distribution [7]:

N0(r) =
N0

(2π)
3
2 r3

g

exp
(
− r2

2r2
g

)
,

where rg =
6πε2

0

√
Eg(hνX)3

e4ne ln(hνX/3Eg)
, (2)

where ne is the concentration of electrons in semicon-
ductor materials, rg is the average radius of the spatial
distribution of carriers, r is a distance from the center of
the distribution of carriers. Such spatial distribution of
free electrons and holes is the initial for the next migra-
tion stage.

Generated charge carriers become thermal for the time
≈ 10−12–10−11 s due to interaction with lattice phonons.
An analysis shows [10] that a dominant process is the
scattering on optical nonpolar phonons. So, for example,
at initial energy of carriers 1–10 eV in Ge, the specific
energy losses at scattering on optical phonons are 20
times higher than at scattering on acoustic phonons.
At the scattering on optical nonpolar phonons, when
W±(t) À kθ (θ is the Debye temperature), the dynamics
of energy losses is described by relation [10–11]:(

− dW±

dt

)

DO

=
(m±)3/2 Ξ 2

√
3

2π3/2~2ρ

kθ√
W± e−

3kθ

4W± K1

(
3kθ

4W±

)
, (3)

where m± is the effective mass of carriers, Ξ is a
constant of optical deformation potential [10, 11], ρ is a
density of crystal matter, K1(x) is the first-order Bessel
function of the second kind, which can be expressed
as [10]:

K1(x) = x

∫ ∞

1

e−xt
√

t2 − 1dt ≈ 1
x

e−
x
2 ;

10−2 ≤ x < 1.

Carriers of initial energy W À kT in solid can be con-
sidered as being free; therefore dependence of diffusion
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coefficients of nonequilibrium “hot” charge carriers can
be determined by relation

D±(t) =
1
3
υ±(t)l±(t), (4)

where υ±(t) =
√

2W±(t)/m± is a velocity of charge
carriers, l± = υ±(t)/[(τ−1

AC)± + (τ−1
DO)±] is a mean free

path determined by the scattering processes, τDO is the
relaxation time at the scattering on optical nonpolar
phonons during thermalization, τAC is the relaxation
time at the scattering of already thermal equilibrium
carriers on acoustic phonons. In case, when the scatter-
ing on optical phonons prevails at thermalization and
after thermalization, the scattering of carriers can be
considered taking into account only acoustic phonons,
the relation (4) can be expressed as a function of carrier
energy and total relaxation time

D±(t) =
2
3

W±(t)

m±
[(

τ−1
AC

)±
+ τ−1

DO (W±(t))
] → D0. (5)

Estimation of relation (5) taking into account (3) allows
to obtain dependences of the energy and diffusion
coefficients of carriers on their thermalization time

W±(t) ≈ 3
2
kT +

(
e

kθ
W0

√
W0 − tC±DO

)2

, (6)

D±(t) =
2
3

W (t)

m±
[(

τ−1
AC

)±
+ 2C±DO

kθ e−
kθ

W (t)
√

W (t)
] ,

C±DO =
(m±)3/2 Ξ 2

π3/2~2ρ
√

3
, (7)

where W0 is the initial kinetic energy of photoelectron.
Thermalization time (Tterm), during which the carrier
energy becomes equal to the equilibrium thermal energy
of the crystal lattice, is Tterm = C−1

DO exp(kθ/W0)
√

W0.
Calculating (6), one can choose the initial value of
the energy of “hot” carriers of the same order as the
band gap energy of the semiconductor (W0 ≈ Eg).
Indeed, this value can be considered as boundary one,
when secondary ionization of the media turns out to be
impossible (for generation of one electron–hole pair, the
energy of (2.5–3)× Eg upon the average is used [9, 12]).
Considering that motion of electrons and holes during
the thermalization process is diffusive motion with
variable diffusion coefficients D±(t) and the influence
of external electric field is inconsiderable, because
W± À |eE0l|, the spatial distribution of carriers at any
time moment will be described by Gaussian function

N±(r, t) =
N0[

2π
(
r2
g + σ2(t)

)] 3
2

e
− r2

2r2
g+2σ2(t) , (8)

where σ(t) is the average radius, the spatial distribution
of carriers at thermalization at time moment t enlarged
in. The increase of dispersion of carriers distribution
during time dt at the time moment t owing to diffusion
is d(σ2(t)) = D(t)dt. Calculating the dependence (5),
we obtain an average sphere radius Rterm of the spatial
distribution of charge carriers after thermalization

Rterm =

√
r2
g +

∫ Tterm

0

D(t)dt .

Hereby, the spatial distribution of electrons and holes
after thermalization is described by Gaussian function,
as well as after generation stage [7], but in Eq. (2), it is
necessary to make a substitution r2

g → (Rterm)2. In fact,
such substitution means that it is possible to combine
the generation and thermalization stages in one getting
corresponding parameters of final spatial distribution of
generated carriers, which will be initial distribution for
the migration stage. Relation (8) allows calculating of
self-field of charge carriers as well as its influence on the
kinetics of carrier drift, and so on the formation of rising
edge of pulse of conduction current created in the exter-
nal electric circle of detection system. Note that numer-
ical estimations following the relations (6)–(8) point to
considerable reduction (to ≈ 100 V/cm) of self-field of
carriers during 100–1000 ps in different materials.

2.3. The spatial distribution of carriers at drift

If there is an external electric field and a gradient of
concentration of generated charge carriers in the crystal,
which does not contain recombination and localization
centers (for taking into account these centers it is neces-
sary to use general system of the kinetic charge transport
equations [13]), there are drift and diffusion currents,
whose densities in general case are defined by relation

J± = eN±(x, y, z, t)µ±E ∓ eD±∇N±(x, y, z, t). (9)
Sign “+” in (3) is attributed to the holes, sign “–” —

to the electrons. N+(x, y, z, t) and N−(x, y, z, t) are the
spatial distributions of concentration of generated free
holes and electrons, E is a vector of electric field, µ± is
a mobility of carriers. In order to have the certain direc-
tion of the carriers drift we use the Cartesian coordinate
system, where the OX axis opposite to the direction of
the vector of external electric field. In accepted coordi-
nate system, relation (9) supplemented with continuity
equation, which defines time changes of concentration of
carriers, allows to obtain the system of kinetic equations
of diffusion-drift motion of electrons and holes

dN−(x, y, z, t)
dt

= D−∆N−(x, y, z, t)− µ−E ·∇N−(x, y, z, t),

dN+(x, y, z, t)
dt

= D+∆N+(x, y, z, t) + µ+E ·∇N+(x, y, z, t). (10)
It is supposed that size of the local area of generation of
free charge carriers is much smaller than the thickness of
detector (d) and transversal sizes of detector (along di-
rections OY and OZ) highly exceed the thickness. This
allows to use delta-function approximation as initial dis-
tribution of carriers at the solution of system (10) (be-
cause rg in (2) is much smaller than size of the drift area
in semiconductor detector). When the carriers reach the
electrodes, they disappeare from total distribution, so for
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solution of equation system (10), the following boundary
conditions must be used:

N+(0, y, z, t) = N−(0, y, z, t) = 0,

N+(d, y, z, t) = N−(d, y, z, t) = 0. (11)
Complete solution of equations (10) defines the spatial
distribution of concentration of carriers at drift and could
be obtained by means of variable separation method

N± (x, y, z, t) =
N0

4πD±t
exp

(
− (y − y0)

2 + (z − z0)
2

4D±t

±µ±E(x− x0)
2D± − (µ±E)2 t

4D±

)
2
d

∞∑
n=1(

exp
(
−

(πn

d

)2

D±t

)
sin

(πnx

d

)
sin

(πnx0

d

))
, (12)

where x0 is a coordinate of absorption X-ray quantum in
the semiconductor. The calculated distribution functions
of concentration of free electrons and holes along direc-
tion OX at the different time moments in Si semiconduc-
tor detector are given in Fig. 1. For the calculation, the
data for mobility of charge carriers in Si from [14] were
used.

Fig. 1. Distribution functions of concentration of free
electrons and holes (*) along direction of the OX axis
(from left to right) at the different time moments in Si
semiconductor detector: 1, 1∗ — 10 ns; 2, 2∗ — 20 ns;
3, 3∗ — 30 ns; 4, 4∗ — 40 ns (d = 300 µm, x0 = 150 µm,
E = 300 V/cm, T = 300 K, hνX = 5 keV).

Figure 1 shows that the concentrations of electrons and
holes in the drift differ by several times. This is due to
the fact that the carrier mobility and, consequently, their
diffusion coefficients are also different in several times.

2.4. Form of current pulse of XRC

For the calculation of current in an external electric
circle i(t), that free charge carriers create at drift to the
electrodes in the electric field, it is necessary to apply
the Ramo–Shockley theorem for point charges [15, 16].
Whereas the work of electric field on displacement of all
free carriers is determined as a sum of works on moving
of each carrier, the value of current in an external cir-
cle is determined as a sum of currents created by all free

charge carriers

i(t) =
q−(t)µ−E

d
+

q+(t)µ+E

d

=
eN0E

d

[
E(t)µ− + P (t)µ+

]
. (13)

Introduction of E(t) and P (t) functions (the part of gen-
erated electrons and holes, which are staying free at the
time moment t and continuing the drift) is necessary for
subsequent taking into account the processes of carrier
localization on traps and recombination centers.

E(t) =
1

N0

∫ ∞

−∞

∫ ∞

−∞

∫ d

0

N−(x, y, z, t)dxdydz,

P (t) =
1

N0

∫ ∞

−∞

∫ ∞

−∞

∫ d

0

N+(x, y, z, t)dxdydz. (14)

Fig. 2. Current pulses in Si detector at different value
of electric field: 1 — 140 V/cm, 2 — 100 V/cm, 3 —
60 V/cm (d = 200 µm, x0 = 100 µm, T = 300 K,
EX = 5 keV).

The calculation of (14) is considerably complicated by
the presence of infinite series in the exact solution rel-
atively to carrier concentration function (12). The de-
tailed analysis makes it possible to derive the simple an-
alytical dependences for their approximation

E(t) =
1

1 + exp
(

µ−Et−x0√
D−t/2

) ;

P (t) =
1

1 + exp
(

µ+Et−(d−x0)√
D+t/2

) . (15)

Formulae (15) are obtained in the approximation of the
exact relations (14) for different values of the mobility of
charge carriers and the electric field in different materials
(ZnSe, Ge, Si, CdTe).

The use of these approximating relations allows to sim-
plify considerably the calculations and gives analytical
functions of current pulse keeping dependence on the ba-
sic kinetic parameters of carrier motion. Figure 2 shows
the calculations of the current pulse in Si for different
values of the external electric field.
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3. XRC in the presence of localization centers
in the crystal

3.1. Ratio between free and localized carriers

At initial time moment, all generated carriers of charge
are in free state. In the process of their diffusive drift mo-
tion in the crystal lattice, they begin to be localized on
shallow traps. If lifetime of carriers relatively to local-
ization processes (τ0) is much shorter than drift time,
dynamic equilibrium between number of free (N±) and
localized (N0−N±) carriers sets in after some time. This
process is described by the kinetic equation

dN±

dt
= −N±

τ±0
+

N0 −N±

τ±i
→ N±(t)

=
N0

1 + τ±i
τ±0

(
1 +

τ±i
τ±0

exp
(
− t

τ±0

))
. (16)

Relation (16) determines number of free charge carriers,
which are in drift and create electrical current in external
circle of detector. N±(t)/N0 ratio is a probability to be
in free state for every electron, regardless of his position
in space.

3.2. Probability of frequent localization
of charge carriers

If the drift time and average lifetime in free state
are known, it is possible to find the average number
of successive localizations of carriers m0 at drift m±

0 =
(T±dr/τ±0 )−1. The average number of successive localiza-
tions is not necessarily an integer number, because the
localization process is a statistical process. Considering
multiple successive localizations, an important task is the
determination of probability that carriers will be trapped
at fixed number of time during the drift time.

The account that the acts of localization are processes
independent of each other results in probability of local-
izations as Poisson distribution Fm(m0) = mm

0 e−m0/m!
(when the average number of localizations m0 ≥ 20,
one can use the Gauss distribution). This allows to
determine the number of carriers localized exactly m
during the drift: N0m = N0Fm(m0). The whole process
of collecting of N0 carriers on the electrode could be
divided in mmax independent processes

mmax = m0

[
1 +

√
1

m0
ln

(
N2

0

2πm0

)]
.

For each m group of carriers, the time in a detector
will be increased to the mean value of the total time of
localization on traps ∆tm = mτi. So, duration of the
current pulse in the external circle should be considered
as Tdr + mmaxτi.

3.3. Kinetics of drift of free charge carriers
at localization on traps

At localization on traps m times, the average time of
carriers in free state is not τ±0 , but τ±0m = T±dr/(m + 1).

Correspondingly, the kinetic equation (7) for m group of
carriers becomes

dN±
m(t)
dt

= − (m + 1)N±
m(t)

T±dr

+
N0m −N±

m(t)
τ±i

. (17)

Correspondingly, solution of Eq. (17) is
N±

m (t) = N0Fm(m0)
/
(1 + (m + 1)τ±i /T±dr)

×
(

1 +
(m + 1)τ±i

T±dr

exp
(
− (m + 1)t

T±dr

))
. (18)

Fm(m0) = e−(m−m0)
2/(2m0)/

√
2πm0

In order to take into account progressive collecting of
charge on the electrodes of detector as well as reduction
of charge carriers in the crystal volume, it is necessary
to consider diffusive motion of carriers at drift. In an
ideal semiconductor, the carriers reach the correspond-
ing electrode not simultaneously as a result of diffusion.
The distribution function of number of drifting electrons
over the time is determined through integration of their
spatial distribution function within coordinates of detec-
tor (15). The product D · t in denominator of exponent
in (15) must be substituted by D · Tdr at consideration
of localization of carriers, because localization on traps
does not change diffusive expansion of spatial distribu-
tion of carriers, but creates their delay in the crystal at
drift and frames considerable expansion of current pulse
over the time.

At the presence of intermediate localizations of carri-
ers on traps, uncertainty of getting corresponding elec-
trode is additionally increased as a result of statistical
behavior of time of being in localized state. Diffusion
motion results in dispersion of spatial distribution of car-
riers 2DTdr. An equivalent time period of collecting of
carriers on electrode is

√
2DTdr/µE0. Process of delocal-

ization of carriers from traps is a statistical process and
probability of being in localized state is determined as
wi(t) = exp(−t/τi)/τi. Hence, dispersion of localization
on one shallow trap over the time is

D(t) =
1
τi

∫ ∞

0

(t− τi)2 exp
(
− t

τi

)
dt = τ2

i .

As far as the process of successive m localizations at drift
is considered, the total dispersion for m independent of
each other localization processes will be D(

∑m
j tj) =∑m

j D(tj) = mτ2
i . Delay in time of getting Nm car-

riers to electrode must be taken into account as well:
(Tdr +mτi). So, we obtain that at localization of carriers
on shallow traps, relation (15), for example, for electrons
will be changed as following

Em(t, x0,m)

=


1 + exp




t−mτ−i − T−dr√
D−T−dr

2(µ−E0)
2 + m

(
τ−i

)2







−1

. (19)
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The same result is supposed for holes at localization on
shallow traps. Using (18, 19) we obtain that total prob-
ability of carriers being in drift is determined by the sum
of products of probabilities of separated and independent
processes of localization and diffusion-drift motion

N−(t) = N0

∑
m

(
Fm(m−

0
)Em(t, x0,m)

1 + (m + 1)τ−i /T−dr

×
[
1 +

(m + 1)τ−i
T−dr

exp
(
− (m + 1)t

T−dr

) ])
,

N+(t) = N0

∑
m

(
Fm(m+

0
)Pm(t, x0,m)

1 + (m + 1)τ+
i /T+

dr

×
[
1 + +

(m + 1)τ+
i

T+
dr

exp
(
− (m + 1)t

T+
dr

) ])
. (20)

As a limit approximation of low concentration of traps,
when m±

0 → 0, the current pulse calculated correspond-
ingly to Ramo–Shokli theorem with using relation (20)
will asymptotically tend to the current pulse functions
(13) for motion of carriers in an ideal crystal. Calcu-
lation of electron component of current pulse in Si and
ZnSe at the presence of shallow traps is given in Fig. 3.

Fig. 3. Calculated electron component of current pulse
in the crystal: 1 — Si, 2 — ZnSe (d = 300 µm, x0 =
150 µm, E0 = 300 V/cm, EX = 5 keV, τ−i = τ−0 =
10 ns).

Results of calculations show that different values of car-
rier mobility in referred materials cause remarkable dif-
ference in the number of intermediate localizations during
drift at the same parameters of traps, and thus the form
of XRC current pulse changes.

4. Conclusions

Presented model of kinetics of XRC of semiconductors
allows to get the form of current pulse at absorption of
X-ray quantum in an ideal semiconductor, and to analyze
influence of basic parameters of material and value of
electric field on it. Analytical relations for current pulse,
that significantly simplify the subsequent development of

kinetic model of XRC for semiconductors, are proposed.
The influence of shallow traps on the current pulse of
XRC is considered. The influence of the average number
of localization of carriers at drift on the pulse form in
different materials is analyzed as well.

The obtained relations make it possible to get the
quantitative data for the charge response of semicon-
ductor detectors depending on characteristics of a given
material, radiation parameters and the external electric
field value. The theoretical analysis of the drift and diffu-
sion of carriers is necessary to determine the parameters
of the current pulse in a thick semiconductor detector
(≈ 1–5 mm).
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