
Vol. 117 (2010) ACTA PHYSICA POLONICA A No. 1

Proceedings of the International Workshop “Oxide Materials for Electronic Engineering” (OMEE-2009), Lviv 2009

Symmetry Pattern and Domain Wall Structure
in GdFeO3 Perovskite Type

D. Savytskiia,b, T. Tataryna and U. Bismayerc

aLviv Polytechnic National University, 12 Bandera St., 79013 Lviv, Ukraine
bSRC “Carat”, 202 Stryjska St., 79031 Lviv, Ukraine

cUniversität Hamburg, Grindelallee 48, D-20146 Hamburg, Germany

Symmetry relations between the domain states in GdFeO3 type crystals have been obtained using group-
-theoretical analysis for prototype and ferroelastic space groups. Models for possible domain pairs are developed.
The ion locations on the domain boundary were estimated as intermediate positions between the sites in
crystal structure of neighboring domain states. It is shown that the crystalline structure of the boundary
approaches to the prototype phase structure — the ideal ABO3 perovskite-type structure, however certain
deformations remain. In addition to the shifts of the all ions the tilts of oxygen octahedra of the some
type and related displacements of A ions should take place during the switching of orientation states. The
tilts of octahedra and displacements of A ions are sufficient to form translation states (antiphase domains).
Antiphase domains can have boundaries between themselves basically along the three faces of the orthorhombic cell.

PACS numbers: 61.72.Mm, 61.72.−y, 61.50.Ah

1. Introduction

The perovskite-type structure is adopted by a large
number of oxide compounds with stoichiometry ABO3.
The ideal perovskite structure is characterized by a cubic
framework of corner-linked BO6 octahedra, with large A
cations occupying dodecahedral cavities in 12-fold coordi-
nation. The corresponding space group of cubic symme-
try is Pm3̄m, and the unit cell contains one formula unit
(Z = 1). Under ambient conditions many perovskite-
-type materials turn out to be distorted from the ideal
cubic structural arrangement. A large number of phases
occur due to atomic displacements from their high sym-
metry cubic positions. Among those low symmetry (dis-
torted) perovskites many phases exhibit ferroelastic be-
havior where the cubic structure is the prototype modi-
fication (parent phase).

One of the most prominent phase among the ABO3

compounds is the orthorhombically distorted perovskite
structure of the GdFeO3 type (space group Pbnm,
Z = 4). The distortion is characterized by a−a−c+ type
tilts of BO6 octahedra using Glazer’s notation [1], with
the octahedra themselves remaining essentially undis-
torted. The B cations remain located at the geomet-
rical centers of the octahedra. However, the A cations
are displaced from the centers of the dodecahedral sites,
decreasing their coordination to 8 (Fig. 1). This distor-
tion is commonly encountered in perovskite-type materi-
als, for example in: rare-earth aluminates [2–4], YAlO3

[5], gallates [6–8], ferrites [9–11], titanates [12, 13] un-
der normal conditions and in some silicates at high pres-

sures [14], causing ferroelastic properties as well as the
appearance of antiphase boundaries [15, 16]. The be-
havior of domains can strongly influence materials qual-
ities, for example, the configuration of the magnetic do-
main structure in the solid state solution of rare-earth
manganites [17]. Interactions of point defects with do-
main boundaries determine a whole series of physical
properties in such materials with perovskite-type struc-
ture, recently used for different technical applications.
Among them there is a large group of compounds, hav-
ing unique dielectric, ferroelectric properties [18–21], as
well as ionic [22, 23] and high-temperature electronic con-
ductivity [24].

Ferroic domain structures have been investigated in a
large number of chemical compositions with the struc-
ture of the GdFeO3 type: natural and synthetic CaTiO3

crystals [12, 25–28], (Mg,Fe)SiO3 [14, 26], CaGeO3,
MnGeO3, SmAlO3 [14], LaGaO3 [29–34], NdGaO3

[8, 35]. Experimental techniques were optical mi-
croscopy [8, 25, 31, 33, 35], X-ray diffraction [8, 25, 30,
33, 35], high-resolution electron microscopy and selected-
-area electron diffraction [14, 26–28]. X-ray topography
[29, 32, 34] allowed to find the orientation of domain
states or the composition planes between domains. Var-
ious models of domain pairs have been developed to ex-
plain the experimental results.

There are still some ambiguities in the understand-
ing of the domain structure because perovskite-type crys-
tals of the GdFeO3 have a relatively complicated crystal
structure. Hence, possible and plausible symmetry oper-
ations have to be selected. The aim of this study is to
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Fig. 1. The perovskite-type structure of GdFeO3 pro-
jected along 〈001〉p (a) and 〈100〉p (b). Lines mark the
orthorhombic unit cell.

determine the symmetry operations, which relate differ-
ent domain states in compounds of the GdFeO3-type, as
well as to improve the crystallographic understanding of
the domain walls on the atomic scale.

2. Group-theoretical analysis of space groups

In a previous paper [35] the decomposition of the
point group G = {m3̄m} of the cubic perovskite par-
ent phase into left cosets with respect to F = {mmm}
(point group of the ferroelastic distorted phase) was used
for group-theoretical analysis [36] of the domain struc-
ture of NdGaO3. This approach permitted to determine
the number of orientation states in NdGaO3 type crys-
tals (q = 6) and the symmetry operations which relate
those states geometrically. The material crystallizes in

the GdFeO3-type structure which can be considered as
a stretched perovskite cubic cell along the face diagonal
[110]. Stretching along the other five equivalent face di-
agonals of the cube enables equivalent distortions of the
cell, but differently oriented in space. Hence, there occur
6 possible orientation states (domains) in the ferroelastic
distorted phase.

The cell under consideration contains 4 formulae per
unit. Hence, the cell volume is 4 times larger than that
of the ideal cubic perovskite cell. This means that in
addition to the loss of point group symmetry elements
in the low symmetry phase a loss of translational oper-
ations takes place. Therefore, 4 domains due to trans-
lation states (antiphase domains) [37] occur. Six orien-
tation states can be separated and k = 4 translational
ones. This leads to q × k = 24 symmetry allowed states
in the GdFeO3-type crystals. The domains are related
by symmetry operations Qi of the Pm3̄m space group,
which are absent in the ferroelastic phase Pbnm.

Symmetry operations, which connect state T1 with the
other 23 possible states, are determined by the decompo-
sition of the Pm3̄m symmetry group into 24 left cosets
of the Pbnm group of the ferroelastic phase according to

{Pm3̄m} =
24∑

i=1

Qi × {Pbnm} . (1)

The symmetry operations of the space groups Pbnm and
Pm3̄m are taken using the International Tables for Crys-
tallography [38].

The symbols hi(ti) are used to designate the space
group symmetry elements Qi. The elements Qi are a
combination of the element hi of the point group local-
ized in a fixed point of the lattice (origin O) and the
translation ti. Space group symmetry element Qk, which
is localized in another point of lattice, can be moved to
origin O. Then such space group symmetry element Qk

can be presented as a combination of the element hk of
the point group just localized in the origin O and the
“new” translation t′k, which is the sum of the translation
tk and the translation (−2τ i), where τ i is the vector dis-
placement from the old position of the symmetry element
Qk to the origin O.

The position of the B atom with coordinates ( 1
2
0 0)

(orthorhombic cell) [8] is chosen as the origin O (Fig. 2).
Then the space group Pbnm (or Pnma according to in-
ternational standard) has the following space group sym-
metry elements: identity 1; inversion centre 1̄(0, 0, 0) lo-
calized in origin O; mirror plane m001 placed at z = 1/4;
“diagonal” glide plane n010( 1

2
, 0, 1

2
) placed at y = 1/4;

glide plane b100(0, 1
2
, 0) placed at x = 1/4; twofold

screw axis 2001(0, 0, 1
2
), which passes through origin O;

twofold screw axes 2010(0, 1
2
, 0) and 2100( 1

2
, 0, 0), which

are localized at x = 1/4, z = 1/4 and y = 1/4,
z = 0 (Fig. 2a), correspondingly. Other symmetry op-
erations of the cell are excluded from our considerations
because their operation can be presented as a combi-
nation of operations mentioned above and translations
a, b, c (orthorhombic cell parameters), or their lin-
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ear combinations. Adding the corresponding transla-
tion (−2τ i), we can localize the planes and the axes
in origin O (Fig. 2b). Then the space group symme-
try elements of the space group Pbnm can be presented
as identity 1(0, 0, 0); inversion centre 1̄(0, 0, 0); mirror
planes m001(0, 0, 1

2
); m010( 1

2
, 1

2
, 1

2
); m100( 1

2
, 1

2
, 0); twofold

axes 2001(0, 0, 1
2
); 2010( 1

2
, 1

2
, 1

2
); 2100( 1

2
, 1

2
, 0). We rewrite

these elements using the coordinate system of the per-

ovskite cell: 1(0, 0, 0), 1̄(0, 0, 0), mz(0, 0, 1), 2z(0, 0, 1),
mxy(1, 0, 1), 2xy(1, 0, 1), m−xy(1, 0, 0) and 2−xy(1, 0, 0)
considering the perovskite cell as 1

2
c = cp, 1

2
b− 1

2
a = bp

and 1
2
b + 1

2
a = ap (Fig. 2b). It is significant that the

elements of space group Pbnm are a combination of the
elements of the point group mmm localized in origin O
and three perovskites translations (0, 0, 1), (1, 0, 0) and
(1, 0, 1).

TABLE
Decomposition of Pm3̄m into left cosets of Pbnm and appropriate domains. OST — orientation state.
OST Situation Symmetry operations of space group Pm3̄m

D1

T1 1(0, 0, 0) 1̄(0, 0, 0) mz(0, 0, 1) 2z(0, 0, 1) mxy(1, 0, 1) 2xy(1, 0, 1) m−xy(1, 0, 0) 2−xy(1, 0, 0)

T2 1(0, 0, 1) 1̄(0, 0, 1) mz(0, 0, 0) 2z(0, 0, 0) mxy(1, 0, 0) 2xy(1, 0, 0) m−xy(1, 0, 1) 2−xy(1, 0, 1)

T3 1(1, 0, 1) 1̄(1, 0, 1) mz(1, 0, 0) 2z(1, 0, 0) mxy(0, 0, 0) 2xy(0, 0, 0) m−xy(0, 0, 1) 2−xy(0, 0, 1)

T4 1(1, 0, 0) 1̄(1, 0, 0) mz(1, 0, 1) 2z(1, 0, 1) mxy(0, 0, 1) 2xy(0, 0, 1) m−xy(0, 0, 0) 2−xy(0, 0, 0)

D2

T5 mx(0, 0, 0) 2x(0, 0, 0) 2y(0, 0, 1) my(0, 0, 1) 43
z(1, 0, 1) 4̄3

z(1, 0, 1) 4z(1, 0, 0) 4̄z(1, 0, 0)

T6 mx(0, 0, 1) 2x(0, 0, 1) 2y(0, 0, 0) my(0, 0, 0) 43
z(1, 0, 0) 4̄3

z(1, 0, 0) 4z(1, 0, 1) 4̄z(1, 0, 1)

T7 mx(1, 0, 1) 2x(1, 0, 1) 2y(1, 0, 0) my(1, 0, 0) 43
z(0, 0, 0) 4̄3

z(0, 0, 0) 4z(0, 0, 1) 4̄z(0, 0, 1)

T8 mx(1, 0, 0) 2x(1, 0, 0) 2y(1, 0, 1) my(1, 0, 1) 43
z(0, 0, 1) 4̄3

z(0, 0, 1) 4z(0, 0, 0) 4̄z(0, 0, 0)

D3

T9 mxz(0, 0, 0) 2xz(0, 0, 0) 4y(1, 0, 0) 4̄y(1, 0, 0) 3x−y−z(1, 0, 1) 3̄x−y−z(1, 0, 1) 3−x−yz(0, 0, 1) 3̄−x−yz(0, 0, 1)

T10 mxz(0, 0, 1) 2xz(0, 0, 1) 4y(1, 0, 1) 4̄y(1, 0, 1) 3x−y−z(1, 0, 0) 3̄x−y−z(1, 0, 0) 3−x−yz(0, 0, 0) 3̄−x−yz(0, 0, 0)

T11 mxz(1, 0, 1) 2xz(1, 0, 1) 4y(0, 0, 1) 4̄y(0, 0, 1) 3x−y−z(0, 0, 0) 3̄x−y−z(0, 0, 0) 3−x−yz(1, 0, 0) 3̄−x−yz(1, 0, 0)

T12 mxz(1, 0, 0) 2xz(1, 0, 0) 4y(0, 0, 0) 4̄y(0, 0, 0) 3x−y−z(0, 0, 1) 3̄x−y−z(0, 0, 1) 3−x−yz(1, 0, 1) 3̄−x−yz(1, 0, 1)

D4

T13 m−xz(0, 0, 0) 2−xz(0, 0, 0) 43
y(1, 0, 0) 4̄3

y(1, 0, 0) 3−xy−z(1, 0, 1) 3̄−xy−z(1, 0, 1) 3xyz(0, 0, 1) 3̄xyz(0, 0, 1)

T14 m−xz(0, 0, 1) 2−xz(0, 0, 1) 43
y(1, 0, 1) 4̄3

y(1, 0, 1) 3−xy−z(1, 0, 0) 3̄−xy−z(1, 0, 0) 3xyz(0, 0, 0) 3̄xyz(0, 0, 0)

T15 m−xz(1, 0, 1) 2−xz(1, 0, 1) 43
y(0, 0, 1) 4̄3

y(0, 0, 1) 3−xy−z(0, 0, 0) 3̄−xy−z(0, 0, 0) 3xyz(1, 0, 0) 3̄xyz(1, 0, 0)

T16 m−xz(1, 0, 0) 2−xz(1, 0, 0) 43
y(0, 0, 0) 4̄3

y(0, 0, 0) 3−xy−z(0, 0, 1) 3̄−xy−z(0, 0, 1) 3xyz(1, 0, 1) 3̄xyz(1, 0, 1)

D5

T17 myz(0, 0, 0) 2yz(0, 0, 0) 43
x(1, 0, 0) 4̄3

x(1, 0, 0) 32
−xy−z(0, 0, 0) 3̄2

−xy−z(0, 0, 0) 32
−x−yz(1, 0, 0) 3̄2

−x−yz(1, 0, 0)

T18 myz(0, 0, 1) 2yz(0, 0, 1) 43
x(1, 0, 1) 4̄3

x(1, 0, 1) 32
−xy−z(0, 0, 1) 3̄2

−xy−z(0, 0, 1) 32
−x−yz(1, 0, 1) 3̄2

−x−yz(1, 0, 1)

T19 myz(1, 0, 1) 2yz(1, 0, 1) 43
x(0, 0, 1) 4̄3

x(0, 0, 1) 32
−xy−z(1, 0, 1) 3̄2

−xy−z(1, 0, 1) 32
−x−yz(0, 0, 1) 3̄2

−x−yz(0, 0, 1)

T20 myz(1, 0, 0) 2yz(1, 0, 0) 43
x(0, 0, 0) 4̄3

x(0, 0, 0) 32
−xy−z(1, 0, 0) 3̄2

−xy−z(1, 0, 0) 32
−x−yz(0, 0, 0) 3̄2

−x−yz(0, 0, 0)

D6

T21 m−yz(0, 0, 0) 2−yz(0, 0, 0) 4x(1, 0, 0) 4̄x(1, 0, 0) 32
x−y−z(0, 0, 0) 3̄2

x−y−z(0, 0, 0) 32
xyz(1, 0, 0) 3̄2

xyz(1, 0, 0)

T22 m−yz(0, 0, 1) 2−yz(0, 0, 1) 4x(1, 0, 1) 4̄x(1, 0, 1) 32
x−y−z(0, 0, 1) 3̄2

x−y−z(0, 0, 1) 32
xyz(1, 0, 1) 3̄2

xyz(1, 0, 1)

T23 m−yz(1, 0, 1) 2−yz(1, 0, 1) 4x(0, 0, 1) 4̄x(0, 0, 1) 32
x−y−z(1, 0, 1) 3̄2

x−y−z(1, 0, 1) 32
xyz(0, 0, 1) 3̄2

xyz(0, 0, 1)

T24 m−yz(1, 0, 0) 2−yz(1, 0, 0) 4x(0, 0, 0) 4̄x(0, 0, 0) 32
x−y−z(1, 0, 0) 3̄2

x−y−z(1, 0, 0) 32
xyz(0, 0, 0) 3̄2

xyz(0, 0, 0)

For the space group Pm3̄m the symmetry elements lo-
calized at the origin (B atom) are 48 space group symme-
try elements hi(0, 0, 0), where hi is a symmetry element
of the point group m3̄m [38]. Symmetry elements of the
types hi(0, 0, 1), hi(1, 0, 0) and hi(1, 0, 1) are also pecu-
liar to the Pm3̄m group. This means that in addition
to the reduction of point group symmetry from m3̄m to
mmm in the low symmetry phase a loss of translational
operations (0, 0, 1), (1, 0, 0) and (1, 0, 1) takes place.

In a result, symmetry elements of the types hi(0, 0, 1),
hi(1, 0, 0) and hi(1, 0, 1) should be added in the set of the
Pm3̄m group and the total number of elements increase
to 48 × 4 = 192. Symmetry operations, which connect
state T1 with the other 23 possible states are determined
by the decomposition of these 192 elements of Pm3̄m
symmetry group into 24 left cosets of the Pbnm group
(8 space group symmetry elements) of the ferroelastic
phase.

In a first step the following operations 1(0, 0, 0),
1(0, 0, 1), 1(1, 0, 1) and 1(1, 0, 0) (the three last opera-
tions are translations inherent in Pm3̄m) were applied
as Qi. The symmetry elements of the corresponding left
cosets are presented in the first four rows of Table. The
first left coset includes symmetry operations of the space
group Pbnm which leave the state T1 invariant. Three
other left cosets are combinations of elements of the point
group mmm (1, 2z, 2xy, 2−xy, 1̄, mz, mxy, m−xy) and
the above mentioned perovskite cell translations. These
symmetry operations leave the system of crystallographic
axis unchanged and therefore, the obtained left cosets ob-
tained are a set of operations, which transform the state
T1 into T2, T3 or T4 (antiphase domains). Such regions
can have boundaries along 3 perpendicular planes (001)p,
(110)p and (1̄10)p, which are included in the correspond-
ing left coset and which are parallel to the faces of the
orthorhombic cell.
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Fig. 2. Relationship between unit cells of prototype
and ferrophase for GdFeO3 crystals and localization of
the symmetry elements of the space group Pbnm before
(a) and after (b) moving to origin O.

The element mx(0, 0, 0) and its combinations with
translations (0, 0, 1), (1, 0, 1) and (1, 0, 0) were selected
as the next four generating elements Qi. The elements
of the point group m3̄m, which are absent in the point
group mmm and which are the operations relating the
orientation states D1 and D2 (see Table 1 in [35]) with
each other, are included in the corresponding left cosets.
The elements of the left cosets for T6, T7 and T8 can be
obtained by acting step by step on the left coset for T5

using the translations (0, 0, 1), (1, 0, 1) and (1, 0, 0). This
procedure demonstrates that the orientation state D2 can
be split into four antiphase domains.

The corresponding left cosets for the other T9–T24

states of the D3–D6 orientation domains were obtained
by selecting the corresponding mirror planes mxz(0, 0, 0),
m−xz(0, 0, 0), myz(0, 0, 0) and m−yz(0, 0, 0) and their
combinations with translations (0, 0, 1), (1, 0, 1) and
(1, 0, 0) as Qi (Table).

3. Crystalline structure of domain walls

Using symmetry operations to relate the different
states T1–Ti (Table) and the schematic representation
of the studied perovskite-type structure on the basis of
Glazer’s classification of octahedral rotations we con-
struct configurations of the corresponding pairs of states
in neodymium gallate NdGaO3. It was selected as an
example to demonstrate the crystalline structure of do-
main walls. For schematic representation of the structure
of the materials investigated we used a modified Glazer
scheme. We added the displacement of A ions and the
magnitudes for octahedral tilts to schematic diagrams
proposed by Glazer [1]. The magnitudes of the tilts for
each octahedron are indicated symbolically by a set of
three letters, which refer to the perovskite axes. Each
set of three letters refers to one octahedron. Repeat-
ing the appropriate letter denotes equality of the cor-
responding magnitudes. Similar to Glazer’s scheme we
used superscripts + or – to show defined positive or neg-
ative tilt about the corresponding pseudocubic axis. The

displacement of A-cations from center of dodecahedral
anion environment is indicated by line and fill circle in
gaps of octahedral framework. The fragment of the crys-
tal structure and the corresponding scheme for the T1

state are shown in Figs. 1 and 3. This technique can be
applied to other crystals of GdFeO3 type structure with
similar distortions of the ideal perovskite structure but
with different magnitudes of anion octahedral tilts and
other displacements of the rare-earth ions.

Fig. 3. Schematic representation of the NdGaO3 struc-
ture projection on (001)p (a) and (100)p (b) planes.
Lines mark the orthorhombic unit cell.

We may assume here that the boundary width between
a pair of domain states corresponds to only one layer
of oxygen octahedra (one perovskite cell parameter) and
such boundary is not necessarily the high symmetry cu-
bic modification. The twin boundary (boundary between
orientation states) in crystals may extend to a few cell
parameters [39].

The ionic positions of T2, T3 and T4 were obtained by
applying the operation mxy(1, 0, 0) for T2; mxy(0, 0, 0)
— for T3; mxy(0, 0, 1) — for T4 to the ions of the T1

state. The ionic arrangement on the interface between
T1 and Ti were estimated as the intermediate between
the positions given by the periodic crystal structure of
T1 and Ti. The structure of the states T1–T2, T1–T3 and
T1–T4 are shown in Fig. 4. Here the boundary in or-
thorhombic coordinates is parallel to the (010) plane. As
shown in Fig. 4, the interface approaches the structure
of the prototype phase — the ideal perovskite arrange-
ment, though certain distortions remain. The distortion
of the structure on the boundary depends on the states,
which are separated by the interface. The tilts of oxy-
gen octahedra around two perovskite axes take place for
the domain pair T1–T3. Using Glazer notation [1] this
tilt system is described by a0b−b−. Such tilts produce
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structure belonging to space group Imma, if we do not
take into account the displacement of A cations at do-
main boundary. For the domain pair T1–T2 octahedrons
are rotated around one perovskite axis only and crystal
structure can be attributed to tilt system a0a0c+ and
space group P4/mbm. For the domain pair T1–T4 rota-
tions of oxygen octahedra are absent a0a0a0, i.e. Pm3̄m.
Both space group P4/mbm and Imma is supergroup for
Pbnm and subgroup for Pm3̄m [38].

Fig. 4. Schematic representation of the crystal struc-
ture on the (001)p plane for T1–T2 (a), T1–T3 (b) and
T1–T4 (c) domain pairs in NdGaO3 crystals.

Three types of antiphase boundaries were observed in
La2/3Ca1/3MnO3 (LCMO) due to the loss of translation
vectors R1 = [0, 1

2
, 0], R2 = [ 1

2
, 0, 1

2
], and R3 = [ 1

2
, 1

2
, 1

2
]

in Pnma space group setting [40]. In these three types,
the density of the antiphase boundaries associated with
R3 was the highest in LCMO, which is explained by
the relatively small deformation of the interstitial A sites
along antiphase boundaries (APBs). In the Pnma set-
ting the translation vector R3 = [ 1

2
, 1

2
, 1

2
] corresponds

to the vector of the pseudo-perovskite cell t3 = (1, 0, 1)
whereas R1 = [0, 1

2
, 0] − t2 = (0, 0, 1) and R2 = [ 1

2
, 0, 1

2
]

corresponds to t4 = (1, 0, 0). Antiphase boundary as-
sociated with R3 describes the interface between the T1

and T3 domains. Taking into account that the crystalline
structure of this boundary is closer to the crystal struc-

Fig. 5. Ion displacements on switching the T1 state to
T2 (a), T3 (b), and T3 (c) states.

ture of Pbnm, our simulation of the crystalline structure
of antiphase boundaries confirms the results received in
[40] with a relatively smaller displacement of the inter-
stitial A sites (in other words — the oxygen octahedra
are rotated around two perovskites axes, characteristic
for the bulk Pbnm crystal structure) along APBs apply-
ing R3. Hence the energy of such antiphase boundaries is
the lowest in comparison with other possible APBs that
leads to their high density in LCMO.

Comparing the ion positions shown in Fig. 1 and Fig. 4
we can determine the displacements in the crystal struc-
ture for switching the state T1 to Ti. For example, for
switching state T1 to T2 it is necessary that rotations of
oxygen octahedra of the 2a−2a−0-type (the Glazer rota-
tions) and displacements of rare-earth ions along 〈140〉
take place. For switching T1 to T3 — 002c+-type ro-
tations and displacements along 〈010〉; for switching T1

to T4 — 2a−2a−2c+-type rotations and displacements
along 〈100〉 are required (Fig. 5). In these cases the Ga
ions at the center of oxygen octahedra are not displaced.
For T1 and Ti (i = 2–4) pairs the Ga (B cation) sub-
lattice is generic for both states and leads to merohedral
twinning [12]. It is necessary to note that the rotations
are twice big as in the deformed GdFeO3 type structures
(Pbnm).
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Fig. 6. Schematic representation of the structure on
the perovskite planes for T1–T5 (a), T1–T17 (b) and
T1–T21 (c) domain pairs in NdGaO3; x = ( 1

2
)(γ + α)

and y = ( 1
2
)(γ − α).

Similarly the schemes for T1 and Ti (where i = 5–8)
were constructed, considering another D2 orientation
state (Fig. 6a).The boundaries between this pair of orien-
tation states can be parallel to the mx and my perovskite
planes. Comparing the scheme shown in Fig. 3 and 6a we
can determine the ion displacements necessary to switch
the state T1 to the state T5 (Fig. 7a). It should be no-
ticed that, in contrast to the T1–T2 . . . T1–T4 pairs which
are cases of the same D1 orientation state, in the T1–T5

pair all ions in the structure must see an additional shift
along the [01̄0]p direction in the case of the mx interface
(Fig. 8a) [33, 41].

More complicated models are developed for T1 and Ti

situations of the D3 . . . D6 orientation states. In Fig. 6b
and c the schemes for situations T1–T17 and T1–T21

are given for interfaces parallel to the myz and m−yz

perovskite-type planes, correspondingly. The construc-
tions were made for layers of the crystal structure par-
allel to the (100)p plane, because myz and m−yz planes
are perpendicular. The ion displacements required to
switch state T1 to states T17 and T21 are illustrated in
Fig. 6b, c. During the switching of the state T1 to the
states Ti (i = 2–8) oxygen octahedra rotate with the

Fig. 7. Ion displacements during the switching of the
T1 state to T5 (a), T17 (b) and T21 (c) states with
x = ( 1

2
)(γ + α) nd y = ( 1

2
)(γ − α).

same phase around cp and in antiphase — around ap and
bp by identical angles, whereas for the reorientation of T1

to Ti (i = 9–24) tilts of different angles occur. In this
respect the tilts are synchronised and their orthorhombic
cell translation period is kept (Fig. 7b, c).

In addition to the displacements mentioned above,
all ions of the structure should be twin shifted along
[5.76 1̄ 1]p for T17 and along [5.76 1 1]p for T21 (Fig. 8b)
at room temperature [35, 41].

For the switching of T1 to T17 and T21 (separated
from T1 by S-type domain walls) twin shifts in directions
[011]p and [011̄]p are necessary correspondingly (Fig. 8c)
[35, 41]. The rotation by 180◦ with respect to these direc-
tions is a symmetry operation between the correspond-
ing pairs T1–T17 and T1–T21 (Table). Due to their irra-
tional Miller indices, these interfaces cannot be presented
in the way which was used for interfaces with rational
Miller indices (W -type domain walls). Rotations of oxy-
gen octahedra and displacements of rare-earth ions for
such switchings are identical to those of the correspond-
ing pairs T1–Ti (i = 9–24), separated by W -type domain
walls.

The above mentioned is also characteristic for other Ti

of orientation states D5, D6, D3 and D4.
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Fig. 8. Shifts in GdFeO3 for the switching of the D1

orientation state (a) to a D2 orientation state in a (100)p
domain wall; (b) to D5 orientation state in a (01̄1)p
W -type domain wall; (c) to the D5 orientation state in
case of a S-type domain wall.

4. Conclusions

A group-theoretical analysis of prototype Pm3̄m and
ferroelastic Pbnm space groups allowed to find the sym-
metry operations which relate the different domain states
in GdFeO3-type crystals. Such domains are geomet-
rically related by symmetry operations of space group
Pm3̄m, which do not occur in the ferroelastic space
group Pbnm. Each of the 6 possible orientation states
can be separated by 4 translational ones in GdFeO3-type
crystals.

The models of the state pairs can be built on the basis
of the proposed symmetry operations relating the dif-
ferent domain states. The ion located on the boundary
between the states were estimated to be at intermediate
positions between the positions in both states. It has
been shown that in GdFeO3 type crystals the crystalline
structure on the boundary between the domain states
always tends towards the prototype phase (the ideal per-
ovskite structure), though certain deformations remain
visible.

Ion displacements which occur during switching the
states, can be determined by comparing the ion loca-
tions in single domain and two domain areas of the crys-

tal. It has been shown that in addition to twin shifts of
all ions, tilts of oxygen octahedra of the same type and
appropriate displacements of the A ions take place on
switching the orientation states in the crystal structure
of GdFeO3 type. The tilts of octahedra and displace-
ments of A ions are sufficient to form antiphase domains.
Such regions may have boundaries along 3 mutually per-
pendicular planes (001)p, (110)p and (1̄10)p, which are
parallel to the faces of the orthorhombic cell.
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