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Electron localized in a quantum dot in the vicinity of conductor surface, causes an induced potential to
appear. This potential enables self-focusing of electron wave function. Because of this feature, in a planar
nanostructure consisting of a quantum well covered with a layer of an insulator, on top of which metal electrodes
are deposited, formation of induced dots and quantum wires is possible. By applying appropriate voltages to the
electrodes, it is feasible to transport an electron in a fully controllable way in a form of a stable wave packet
between two specific locations in a nanodevice. While transporting an electron along properly shaped closed loops,
spin–orbit coupling intrinsically present in a semiconductor nanostructure can be employed to perform operations
on an electron spin.

PACS numbers: 73.21.La, 73.63.Nm, 03.67.Lx, 05.45.Yv

1. Introduction

The hopes based on the tremendous calculation ca-
pabilities of a quantum computer caused many people
to look for its physical implementation. One of the re-
search areas is to construct a quantum computer employ-
ing semiconductor nanostructures. A huge advantage of
such solutions is the possibility to join it with the classi-
cal computer structures. The most promising realization
of a quantum bit (qubit) in semiconductor nanostruc-
tures are spin states of a single electron confined in a
quantum dot [1–3]. At present in such nanodevices it
is possible to rotate electron spin [4–8] as well as per-
form a read/write operations [9–11]. In most cases in
order to rotate the spin an electron is inserted in a mag-
netic field which splits energy states with a spin parallel
and antiparallel to the magnetic field. By applying a mi-
crowave radiation with energy equal to the energy shift
between two split spin states, transitions between these
states are obtained (the Rabi oscillations). However even
in the presence of a strong magnetic field the spin split-
ting energy is low, hence microwave wavelength used for
spin rotation is of an order of millimeters (for 10 T —
6 mm). Due to this fact it is very hard to apply this
mechanism while building multi-qubit registers. If the
distance between qubits forming a register is of the or-
der of micrometers and a microwave used for rotation
purpose has wavelength of the order of millimeters, the
microwave would interact with many qubits simultane-
ously (it would be impossible to rotate only one spin).
The latest solution is to force spin rotation using AC
voltage applied to electrodes in an electrostatic quantum
dot. This approach does not suffer from the disadvan-

tage described above. In such device the spin rotation
is obtained due to joined magnetic field interaction and
spin–orbit coupling [8].

In this paper we review our previous works [12–16],
where we proposed totally new construction of a nanode-
vice, which allows performing a single electron spin ope-
rations corresponding to the most important one-qubit
quantum gates.

2. Self-focusing mechanism of an electron
wave function — inducton efect

Classical charge localized in the vicinity of a grounded
conductor is a source of an electric field, which leads to
a redistribution of charge on a conductor and effectively
causes an induced charge to appear on a conductor sur-
face. The induced charge is then a source of a potential
attracting the original charge. Similar effect can as well
be observed in a quantum case [12, 13].

Let us consider a planar nanostructure formed by
parallel layers: conductor, insulator or semiconductor
blocking barrier (AlGaAs), semiconductor quantum well
(GaAs) and a second barrier (AlGaAs). Exemplary
structure is presented in Fig. 1.

If we form an electron wave packet of a finite size in
a quantum well, an induced charge will appear on the
conductor surface and will be a source of a potential at-
tracting the original charge.

Wave packet moving parallel to the structure surface
with a small velocity causes the induced charge to move
with it. Packet velocity is marked in Fig. 1 as a black
arrow directed to the right. Assuming that we have
an ideal conductor, charge redistribution occurs imme-
diately without any energy loss. We have to bare in
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Fig. 1. Schematics of the considered structure, the
wave packet and the induced charge. Solid vector shows
the packet velocity, and the dashed vectors — the forces
acting on the electron in the front and the tail of the
wave packet.

mind that a force acting on a front of the packet con-
sists of a component acting in the opposite direction to
the packet’s velocity (retarding), on the other hand force
acting on a back of the packet has a component acting
in the same direction as packet’s velocity (accelerating).
Forces acting on a packet are illustrated in Fig. 1 as dot-
ted arrows. It is a known mechanism leading to the pro-
cess of forming and preserving a soliton shape.

3. Calculation method

In case of an infinite metal surface, an image charge
method known from electrostatics, can be employed to
compute an induced potential. However in a case of
finite-size electrode, the self-focusing effect of an electron
wave function appears as well, but the image method is
no longer applicable. In order to calculate the induced
potential we have to use calculation method basing on a
Poisson equation solution [14]:

∇2Φ (r) = − 1
εε0

ρ (r) . (1)

We are solving a Poisson equation in a 3D cuboid includes
the whole nanodevice. We choose such cuboid sizes in all
three dimensions, that for the infinite metal electrode the
Poisson-based solution corresponds to an image-method
solution which can be used in this case. To solve the
Poisson equation we use boundary conditions imposing
the disappearance of an electric field component parallel
to the cuboid surface. While defining boundary condi-
tions we also take into consideration voltages applied to
the electrodes.

The charge density localized under the metal electrode
is a source of an electric field. We express it with an
electron wave function ψ(r) and its charge −e:

ρ (r) = −e |ψ (r)|2 . (2)
Electrostatic potential Φ(r) obtained using this method
is a total potential which, thanks to a superposition prin-
ciple, can be broken in two components originating from
two different sources

Φ (r) = ϕ1 (r) + ϕ2 (r) . (3)
First component ϕ1(r) originates directly from the
charge density distribution and we can compute it as

ϕ1 (r) =
1

4πεε0

∫
d3r′

ρ (r′)
|r − r′| . (4)

Second component ϕ2(r) originates from a charge in-
duced on the metal electrode. It is an induced potential,
which we are looking for. To obtain the value of this
component we subtract the potential (4) from the poten-
tial obtained by solving Poisson Eq. (1):

ϕ2 (r) = Φ (r)− ϕ1 (r) . (5)
Potential computed in this way is then used in the
Schrödinger equation for an electron confined in the in-
duced potential. For a nanostructure proposed in Fig. 2
we can neglect an electron motion in a direction parallel
to a growth direction. As a result of this simplification
we are solving 2D Schrödinger equation with a following
Hamiltonian:

H = − ~
2

2m

(
∂2

∂x2
+

∂2

∂y2

)
− eϕ2(x, y, z0) , (6)

where z0 is a center of a quantum well. In order to com-
pute electron confinement energy and a wave function in
a stationary state we solve a Hamiltonian (6) eigenequa-
tion

Hψ (r) = Eψ (r) . (7)
Because the electrostatic potential depends on an elec-
tron wave function ψ(x) via the charge density, and the
electron wave function depends on the potential ϕ2, we
solve this problem using self-consistent iterations. To ob-
tain a time evolution simulation we numerically solve a
time-dependent Schrödinger equation using the following
iterative form:

ψ (r, t + ∆t) = ψ (r, t−∆t)− 2i
~

H (r, t)ψ (r, t)∆t.(8)

In case of a motionless inducton trapped under the elec-
trode, the Hamiltonian is time-independent. However,
when the inducton is set in motion by the application of
voltages to the electrodes, the electron distribution den-
sity introduces time dependence to the Hamiltonian

ρ (r, t) = −e |ψ (r, t)|2 . (9)
In order to include time dependence in our calculations,
within each time-step of an Eq. (8) we solve a Poisson
equation.

4. Induced quantum dots and quantum wires

If a metal electrode is formed in a shape of any finite
geometric figure (e.g. square or circle), an electron will
be trapped directly beneath the electrode and will not be
able to run away until it obtains a kinetic energy which is
bigger than the binding energy. If the size of an electrode
is comparable with the radius of a wave packet (induc-
ton), lateral motion becomes impossible which results in
a creation of an “induced” quantum dot [14] beneath the
electrode. A density distribution |ψ(x, y)|2 of an electron
trapped under a square electrode (pictured with a blue
square) of a side width b = 70 nm is presented in Fig. 2a.
In our calculations we assumed material parameters char-
acteristic of GaAs: the electron effective mass m = 0.067,
dielectric constant ε = 12.5. In case of an electrode in the
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rectangular shape, when one of the rectangle side is much
bigger then the wave packet radius (like a straight cur-
rent path), inducton remains with one spatial degree of
freedom, to move along the path. “An induced” quantum
wire is formed beneath the electrode [14]. The electron-
-density distribution is presented in Fig. 2b.

Fig. 2. (a) Electron charge density in the quantum dot
induced by square metal plate of width b = 70 nm.
(b) Charge density of the wave packet confined under
the metal bar of width b = 50 nm.

Let us consider a nanodevice with a cross-section pre-
sented in Fig. 1, and electrodes shape shown in Fig. 3b.
There are three electrodes with gaps of a width of 10 nm
between them. Beneath the first square electrode e1 of
size (70 nm, 70 nm) an induced quantum dot is formed,
to which in an initial moment an electron is injected. Se-
cond electrode e2 (current path) of size (50 nm, 500 nm)
should effectively induce a quantum wire in a quantum
well localized beneath. This quantum wire will be used
to transport an electron to a quantum dot induced under
the electrode e3 of size (70 nm, 70 nm).

Fig. 3. (a) Electron charge density as a function of the
x-variable and time calculated at the symmetry axis
(y = 100 nm) of the electrode configuration presented
with blue lines in (b). The contour plots in (b) display
the charge density at subsequent moments in time.

We assume that an electron is confined in a quantum
dot induced under the electrode e1 time long enough to
relax to the ground state. In order to obtain a minimum
of a potential energy under electrode e1 we apply fol-
lowing voltages (Schottky potential barrier is neglected):
V 1 = 0.0 mV, V 2 = V 3 = −0.1 mV. After the elec-
tron is put in the ground state we change applied volt-

ages: V 1 = −0.1 mV, V 2 = 0.0 mV, V 3 = −0.1 mV
and start to iterate time-dependent Schrödinger equa-
tion. The electron senses the potential differences, leaves
the quantum dot induced under electrode e1 and gains
a kinetic energy. Going balistically along the quantum
wire induced under the electrode e2 it reaches the elec-
trode e3. As soon as the electron reaches the electrode
e3 we change the voltage applied to the electrode e2 and
set it to V 2 = −0.15 mV, so the electron is permanently
trapped under electrode e3. The electron-density dis-
tribution wandering along the nanodevice is presented
in a few successive time steps in Fig. 3b. In Fig. 3a
|ψ(x, y0, t)|2 is presented, where y0 = 200 nm is a coor-
dinate of a geometric center for all three electrodes. In
a t = 0 moment, which is the moment of applying a re-
pulsive voltage to the electrode e1, the inducton is not
moving, then it gains a velocity (accelerate) until there
is non-zero electron-density within a gap between elec-
trodes e1 and e2. Further it goes with a constant velocity
beneath the path e2. Finally the packet is caught under
the electrode e3, and starts to oscillate, as not whole
kinetic energy is lost while trapping inducton. It is ex-
tremely important to notice the fact that the electron has
been transported (in 100%) between two induced quan-
tum dots.

Let us consider a similar semiconductor nanostructure
with different shape of electrodes deposited on its surface
(width is the same). Let us assume a path e2 with a 90◦
bend. We will force the trapped inducton to change its di-
rection. The time-evolution result is presented in Fig. 4.
There is one bend presented in Fig. 4a and two bends
in Fig. 4b.

Fig. 4. Snapshots of the time evolution of the electron
density following the path which is bended once (a) or
twice (b). The arrows indicate the cut corners of the
metal path. The electron leaves the quantum dot in-
duced under the e1 electrode and goes to the quantum
dot under e3.

It occurs that we are able to lead the electron to
any place in a nanostructure even along a bended path.
Please draw your attention to the edge of the current
path marked with arrows in Fig. 4. It ensures the change
of the direction with conservation of a reflection law. If
the path corner is not cut the electron reflects from the
edge and comes back underneath the electrode e1.
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5. Spin–orbit coupling

The ability to transport the electron along any curve
allows using a spin–orbit coupling to perform electron
spin operations. In order to take into account the spin–
orbit coupling during simulations, we add two terms
to Hamiltonian (6):

H → H + β (pxσx − pzσz) + α (pzσx − pxσz) . (10)
First term describes a Dresselhaus coupling [17], which is
intrinsically present in semiconductors with a crystal ele-
mentary cell without the inversion symmetry (semicon-
ductor compounds), the other term describes a Rashba
coupling [18], which originates from the asymmetry of a
quantum well.

In both terms we can find Pauli matrices σi. In order
to take spin into consideration, electron wave function is
constructed in a form of a two-row column matrix

Ψ(x, z, t) =

(
ψ1 (x, z, t)
ψ2 (x, z, t)

)
(11)

and charge density used in a Poisson Eq. (1) is given with
a following expression:

ρ (r, t) = −e
(
|ψ1 (x, z, y0, t)|2 + |ψ2 (x, z, y0, t)|2

)

×δ (y − y0) . (12)
In further simulations we will use Hamiltonian (10).

Assuming that only the Rashba coupling is possible
and Dresselhaus interaction is not taken into account,
let us consider a system presented in Fig. 5a. It consists
of two electrodes e1 and e2 placed along the x axis on
the surface of the nanostructure presented in Fig. 1. In
the starting moment on both electrodes we put a zero
voltage with respect to the substrate V0 = 0.0 mV. We
form an electron wave function underneath the electrode
e1 (marked in darker grey) in an inducton ground state,
simultaneously forcing such a spin state, that average
values of all x, y, z spin coordinates are equal. Having a
formed wave function in a staring moment we increase a
voltage applied to the electrode e2 by V2 = 0.2 mV and
start iterations according to the equation (8). Changed
potential distribution causes an electron to be pulled un-
der the electrode e2 and starting to move along the z
axis. It accelerates until whole wave function is localized
beneath the electrode e2. Starting from this moment it
moves with a constant velocity. Electron position as a
function of time is presented in Fig. 5b as a black solid
line.

The dotted lines show how the average values of spin
coordinates change in time. We can see that while elec-
tron is moving towards the z axis, 〈σx〉 is not changing.
〈σy〉 and 〈σz〉 coordinations oscillate. We can observe
a spin rotating around the x axis. In a similar way we
can show that if electron is moving towards the x axis,
the Rashba Hamiltonian is responsible for a spin rota-
tion around the z axis, while the Dresselhaus Hamilto-
nian is responsible for a spin rotation around the axis,
along which electron is moving.

Rotation angle depends on a spin–orbit coupling con-

Fig. 5. Inducton position as a function of time and
time evolution of an average values of spin coordinates
while electron moving along the z axis with Rashba
coupling only. (a) Position of the electrodes e1, e2 (ar-
rows) on top of the structure. (b) Electron packet z
position vs. time (solid line, left axis). Average values
(dashed lines) of the Pauli operators: 〈σz〉 [red (light
gray) color], 〈σx〉 (black) and 〈σy〉 [blue (dark gray)] —
referred to the right axis.

stant, electron effective mass and an electron travel dis-
tance. In a simulation presented in Fig. 5 we employed
a coupling constant α = 0.0005 in atomic units, which
is the same as 7.2× 10−13 eV m and corresponds to the
range predicted for an asymmetric quantum well [19].
Quantum well width and a blocking barrier width were
assumed 10 nm each, electron effective mass m = 0.19
and dielectric constant ε = 13 correspond to material
parameter for Si. Analyzing a spin oscillation graph pre-
sented in Fig. 5 we can see that to rotate the spin by 360◦
an electron has to cover distance of λSO = 1.6 µm (spin–
orbit (SO) length).

6. Quantum gates

By choosing a suitable length of the path the electron
has to traverse we can rotate the spin by any angle. Be-
cause movement in perpendicular directions results in the
spin rotations around axes perpendicular to themselves,
we can perform a specific electron spin rotation by for-
cing an electron to run under electrodes forming closed
circuit [18]. A proposition for a device performing a logi-
cal NOT operation is presented in Fig. 6.

On a surface of a nanostructure consisting a quantum
well (presented in Fig. 1), electrodes are deposited as it
is shown in Fig. 6 in grey color. An induced quantum dot
is created beneath the electrode e1. Spin of the confined
electron is representing a quantum bit. Electrode e2 will
be used to transport the electron along a loop trajectory
back underneath the electrode e1. Lengths of respective
parts of the electrode e2: A, B, C, D are chosen in such
a way, that while the electron is moving, its spin rotates
by a defined angle.

Likewise in the simulation presented in Fig. 5, in a
starting moment t = 0 we put equal voltages to all elec-
trodes and form an electron wave function in an inducton
ground state beneath the center of the electrode e1. Ad-
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Fig. 6. An electrode arrangement performing a NOT
operation on a single electron spin (assuming Rashba
coupling). Electrodes are marked in grey color. A solid
blue line shows electron wave packet trajectory. Spin
directions are marked in red color.

ditionally we set an electron spin to an “up” direction at
the beginning.

We increase a voltage applied to the e2 and e4 elec-
trodes by 0.2 mV and start an iteration of the time de-
pended Schrödinger Eq. (8) with the Hamiltonian (10).
During each time step we solve Poisson Eq. (1) with an
electron density derived from Eq. (12). The electron wave
packet senses an electric field which was just created and
accelerates in a direction of an x axis. During first stage
it goes along a segment A, due to a cut electrode corner
it reflects and changes its direction, goes along a part B
and afterwards C and D. Just after the electron reaches
the electrode e1 we increase its voltage by 0.3 mV in order
to trap the electron beneath it. Spin orientation is pre-
sented in Fig. 6 in red color. Initially electron had a spin
directed parallel to z axis, while moving under A segment
(along x axis) the electron spin remains parallel to the
z axis. While in B segment (motion along the z axis)
spin is rotated around the x axis by 90◦ and takes the
“from the page” orientation. While going through C seg-
ment (along the x axis) spin is rotating by 180◦ around
the z axis and takes the “to the page” orientation. While
going under D segment spin rotates again around the x
axis by −90◦ and finally the trip is ended with the spin
directed opposite to the initial direction. This is a NOT
logical gate operation.

Other one-qubit logical gates can also be created.
A nanodevice described in the work [16] is illustrated
in Fig. 8. It allows performing any sequence of the three
one qubit operations on a single electron spin: negation
— UNOT, phase shift by π — Uπ and Hadamard ope-
ration — UH. The electron, whose spin will be used to
perform an operation, is placed under the electrode e1.
Afterwards we force it to move along appropriate trajec-
tory by applying voltages to the electrodes. Average va-
lues of the electron localization computed during the sim-
ulation of an electron wave packet are presented in Fig. 7,
NOT, phase shift and Hadamard trajectories are marked
in black, red and blue colors respectively. ZnTe material
constants were applied during these simulations. Since
the Dresselhaus coupling is rather strong in this com-
pound, for simplicity reasons we did not include Rashba

coupling in our calculations. One should notice that be-
cause of different type of coupling, NOT gates presented
in Fig. 6 and Fig. 7 have different spatial orientation.

Fig. 7. An electrodes system of a nanodevice perfor-
ming negation UNOT, Hadamard UH and phase shift
Uπ operations on a single electron spin.

7. Summary

The inducton effect resulting in electron wave func-
tion self-focusing mechanism, caused by the interaction
of the electron with the charge induced on the electrodes
surface, allows to transport the electron in a form of a
stable wave packet along a loop trajectories defined with
the electrodes deposited on a nanostructure surface.

While electron is wandering through the semiconduc-
tor, due to a spin–orbit coupling, a spin precession round
an axis depended on the coupling type and motion direc-
tion occurs. We are able to compose spin rotations, just
by choosing appropriate lengths of respective segments,
performing all one-qubit quantum gates operations. We
have planned and simulated working devices performing
a logical operations of a NOT, Hadamard and phase shift
operations on a single electron spin. Transitions between
spin quantum states are performed by applying small
(fraction of a mV) DC voltages to the electrodes. This
implementation allows us to change many qubits in an
independent way.

Spin states time evolution were observed during the
simulation of a working system, which was performed
by an iterative solution of a time dependent Schrödinger
equation. The quantum approach undoubtedly used in
our simulation, shows without a question that because of
the inducton effect the spatial part of an electron wave
packet exhibits many features of a classical electron. Par-
ticularly it is able to transmit or reflect from the potential
barrier with a 100% probability. These classical features
of a wave packet allow performing a spin operation with
a probability arbitrary close to 1.



S-12 S. Bednarek, R.J. Dudek

References

[1] S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990).
[2] D. Awshalom, D. Loss, N. Samarth, Semiconduc-

tor Spintronics and Quantum Computation, Springer
Verlag, Berlin 2002.

[3] R. Hanson, L.P. Kouwenhoven, J.R. Petta,
S. Tarucha, L.M.K. Vandersypen, Rev. Mod.
Phys. 79, 1217 (2007).

[4] J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird,
A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson,
A.C. Gossard, Science 309, 2180 (2005).

[5] F.H.L. Koppens, C. Buizert, K.J. Tielrooij, I.T. Vink,
K.C. Nowack, T. Meunier, L.P. Kouwenhoven,
L.M.K. Vandersypen, Nature 442, 766 (2006).

[6] W.A. Colsh, D. Loss, Phys. Rev. B 75, 161302 (2007).
[7] F.H.L. Koppens, C. Buizert, I.T. Vink, K.C. Nowack,

T. Meunier, L.P. Kouwenhoven, L.M.K. Vandersypen,
Nature (London) 442, 766 (2006).

[8] K.C. Nowack, F.H.L. Koppens, Yu.V. Nazarov,
L.M.K. Vandersypen, Science 318, 1430 (2007).

[9] J.M. Elzermann, R. Hanson, L. H. W. van Bev-
eren, B. Witkamp, L. M. K. Vandersypen, and
L. P. Kouwenhoven, Nature 430, 431 (2004).

[10] R. Hanson, van L.H.W. Beveren, I.T. Vink, J.M. Elz-
erman, W.J.M. Naber, F.H.L. Koppens, L.P. Kouwen-
hoven, L.M.K. Vandersypen, Phys. Rev. Lett. 94,
196802 (2005).

[11] T. Meunier, I.T. Vink, van L.H.W. Beveren,
F.H.L. Koppens, H.P. Tranitz, W. Wegscheider,
L.P. Kouwenhoven, L.M.K. Vandersypen, Phys.
Rev. B 74, 195303 (2006).

[12] S. Bednarek, B. Szafran, K. Lis, Phys. Rev. B 72,
075319 (2005).

[13] S. Bednarek, B. Szafran, Phys. Rev. B 73, 155318
(2006).

[14] S. Bednarek, B. Szafran, R.J. Dudek, K. Lis, Phys.
Rev. Lett. 100, 126805 (2008).

[15] S. Bednarek, B. Szafran, Phys. Rev. Lett. 101, 216805
(2008).

[16] S. Bednarek, B. Szafran, Nanotechnology 20, 065402
(2009).

[17] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[18] E.I. Rashba, Sov. Phys.-Solid State 2, 1109 (1960).
[19] E.A. de Andrada e Silva, G.C. La Rocca, F. Bassani,

Phys. Rev. B 55, 16293 (1997).


