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The solution of the one-dimensional Schrödinger wave equation is presented for the potential-energy function
that describes a double delta-barrier under the application of a constant electrical field perpendicular to it. The
transfer matrix technique is employed to determine the transmission coefficient in an analytical form. Some at-
tributes of the transmission coefficient are established. The transmission coefficient is shown to exhibit maxima and
minima, the conditions for maxima and minima in the transmission coefficient are discussed. The current–voltage
characteristic of the biased double delta-barrier is calculated numerically. It is found to exhibit the same oscillatory
behaviour as the transmission coefficient when the voltage applied to the double delta-barrier is increased. The
width of the double delta-barrier is shown to modulate the peak-to-valley ratio in the current–voltage characteristic.
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1. Introduction

This paper presents a very simple method for evaluat-
ing the tunnelling current through a sandwich structure
A–B–A–B–A that is under the application of a constant
electrical field perpendicular to its interfaces (B is a very
narrow single crystalline layer embedded in and being
lattice-matched on both its sides with a bulk crystal A).
The numerical values used in the calculation correspond
to the sandwich structure GaAs/Al1−xGaxAs made of
GaAs as a bulk crystal A and of Al1−xGaxAs as a crys-
talline layer B. The GaAs/Al1−xGaxAs system is the
most known sandwich structure owing to the relative eas-
iness of its fabrication as well as its close lattice matching
[1–3].

Neglecting space charge effects and adopting the
Wannier one-band approximation [4], one can dia-
grammatically represent the biased sandwich structure
A–B–A–B–A with the flat-band scheme shown in Fig. 1
(the horizontal full lines in Fig. 1 correspond to the lower
boundary of the conduction band in the regions A and B).
Thus, the narrow layers B, which are embedded in the
bulk crystal A, are modelled by one-dimensional rect-
angular potential barriers of a width w0 and a height
U0; vide e.g. [5–7]. The applied constant electrical field,
which is perpendicular to the interfaces of the sandwich
structure, is simulated by lowering the bottom of the con-
duction band in the biased regions A. Thus, there is es-
tablished a one-dimensional rectangular potential well of
a finite width 2a and a finite depth eV/2 in the central
region A, and a one-dimensional rectangular potential

well of an infinite extent and a finite depth eV in that
region A, in which the electrical potential is higher by
the applied voltage V . Here e is the elementary charge
and 2a is the width of the central region A. Therefore,
in each region A, the potential energy of a conduction
electron is replaced by its average value. In the case
of a very narrow layer B, i.e. when w0 ¿ 2a, one can
formally let the width of the rectangular potential bar-
rier tend to zero and simultaneously let its height tend
to infinity whilst keeping their product to be constant.
Then, the potential-energy function that represents the
rectangular potential barrier in Fig. 1 becomes a delta-
-function whose strength g is equal to the product of the
width and the height of the original rectangular poten-
tial barrier, i.e. g = w0U0. Although, the delta-function
is a very simplified form of the original potential-energy
function, it still enables one to get a proper insight into
the transmissions through the high and narrow barrier
structures [8–11]. This is also the reason why the delta-
-function potentials are often employed throughout many
parts of the solid-state physics as a very convenient ap-
proximation to more structured and therefore more dif-
ficult, short-ranged potentials. Therefore, it must also
be interesting for one to calculate the tunnelling current
through the biased double delta-function potential, i.e.
through the biased double delta-barrier. As far as the
author knows such a calculation has not been carried
out, though the transmission coefficient for the unbiased
double delta-barrier is available, e.g. in [9–11].

Evidently, the use of the delta-barrier instead of the
rectangular barrier is justified only when electrons trans-
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Fig. 1. Schematic diagram of the electron potential en-
ergy in the rectangular double-barrier with the volt-
age V applied to it.

mitting through the barrier move in all the three regions
A near the bottom of the conduction band. Thus, the
longitudinal energy Ex of the transmitting electron (the
energy that is associated with the electron motion in the
direction perpendicular to the potential barrier) should
be much smaller than the height of the original rectan-
gular potential barrier U0, i.e. Ex ¿ U0. Also the ap-
plied voltage V should be very small, i.e. eV ¿ U0. The
width w0 of the original rectangular potential barrier (the
width of the layer B) should also be much smaller than
the reduced longitudinal wavelength λ̄ of the transmitting
electron. Thus, it must be valid, w0 ¿ λ̄ = ~/

√
2mEx,

where m is the effective mass of the transmitting electron
in the region A and ~ is the reduced Planck constant.

As a matter of fact, the most accurate method of
computing the tunnelling current through the biased
double-barrier structure is based on the exact solution
of the Schrödinger wave equation for the piecewise lin-
ear potential-energy function ([1–3, 12] and references
cited therein). Usually, the effective-mass approximation
with the quadratic momentum–energy relation is sup-
posed to be valid in solving a transmission problem. Sec-
ond, the electron mean free path is supposed to be longer
than the width of the double barrier structure. Further,
it is also assumed that the effects of electron–phonon
and Coulomb interaction are negligible. By the use of
the Airy functions and the transfer matrix technique,
the transmission coefficient for the biased double-barrier
structure can be computed as a function of the elec-
tron longitudinal energy. Modern computers now allow
the transmission coefficient for realistic energy-potential
functions to be computed with a relative ease. However,
an analytical solution of the transmission problem is still
of an instructive value. Thus, the need for simple models
has not decreased and just the double delta-barrier repre-
sents such an archetype of the double barrier structure.
This paper presents the derivation of the transmission
coefficient in an analytical form and the computation of
the tunnelling current through the double delta-barrier.

The organisation of this paper is as follows. In the next
section, the Schrödinger wave equation is employed to ob-
tain the wave function for the potential-energy function,

which corresponds to the limiting case of the potential
barrier shown in Fig. 1. In the third section, the trans-
mission coefficient for the biased double potential delta-
-barrier is presented. Some attributes of the transmission
coefficient are analysed in the fourth section. The tun-
nelling current is computed in the fifth section. Finally,
some concluding remarks are given in the sixth section.

2. Solution of the Schrödinger equation

Thus, the one-dimensional stationary Schrödinger
wave equation,[

− ~2∂2

2m∂x2
+ U(x)− Ex

]
ϕ(x) = 0,

is solved for the following potential-energy function:
U(x) = gδ(x + a) + gδ(x− a)

−eV

2
[Θ(x + a)−Θ(x− a)]− eV Θ(x− a).

Here x represents the longitudinal spatial variable, Ex is
the longitudinal energy of the conduction electron and m
is the electron effective mass. Further, δ(x) is the Dirac
delta-function and g is its strength (a positive value of
the strength corresponds to a barrier, while a negative
value would correspond to a well), Θ(x) is the Heaviside
step function (Θ(x) = 0, if x < 0; and Θ(x) = 1, if
x > 0), e is the elementary charge, V is the voltage ap-
plied to the double delta-barrier, 2a is the width of the
double delta-barrier.

Evidently, the wave function ϕ(x) is to be sought in
the form of plane waves moving from the left to the right
and vice versa [5–14]. Thus,

ϕ(x) = [1−Θ(x + a)] ϕI(x)

+ [Θ(x + a)−Θ(x− a)] ϕII(x)

+Θ(x− a)ϕIII(x)

= [1−Θ(x + a)]
(
AI e+ik1x + BI e− ik1x

)

+ [Θ(x + a)−Θ(x− a)]
(
AII e+ik2x + BII e− ik2x

)

+Θ(x− a)
(
AIII e+ik3x + BIII e− ik3x

)
.

The subscript I refers to the spatial region (−∞, −a)
that is on the left-hand side of the biased double delta-
-barrier, the subscript II refers to spatial region (−a, a)
that is in the middle of the biased double delta-barrier
and the subscript III refers to the spatial region (a, ∞)
that is on the right-hand side of the biased double delta-
-barrier. The symbols AI, BI; AII, BII; and AIII, BIII

represent the amplitudes of those two plane waves in
the respective spatial regions. The three positive wave
numbers k1, k2 and k3 are introduced by the relation
Ex = ~2k2

1/2m = ~2k2
2/2m − eV/2 = ~2k2

3/2m − eV .
Evidently, the wave numbers k1, k2 and k3 represent the
longitudinal component of the wave vector in the respec-
tive spatial regions. The other two components of the
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wave vectors, ky and kz, are parallel to and continuous
across the double delta-barrier.

Subjecting the wave function ϕ(x) to the connection
formulae at the points x1 = −a and x2 = +a (vide
the Appendix A) one can express it as a sum of three
waves: the incident wave, the reflected wave and the
transmitted wave [5–12]. Therefore, the wave function
on the left-hand side of the biased double delta-barrier
can be written as

ϕI(x) = AI e+ik1x + AIr(k1, k2, k3)e− ik1x

+BIIIt(k1, k2, k3)
(

k3

k1

)1/2

e− ik1x,

and on the right-hand side as
ϕIII(x) = BIII e− ik3x

−BIII
r∗(k1, k2, k3)t(k1, k2, k3)

t∗(k1, k2, k3)
e+ik3x

+AIt(k1, k2, k3)
(

k1

k3

)1/2

e+ik3x.

The quantities t(k1, k2, k3) and r(k1, k2, k3) are obtained
in Appendix A. Thus,

1
t(k1, k2, k3)

=
(

k3

k1

)1/2

e+i(k3+k1)a

×
[
(k3 − k2 + iκ)(k2 − k1 − iκ)

4k3k2
e+2ik2a

+
(k3 + k2 + iκ)(k2 + k1 + iκ)

4k3k2
e−2 ik2a

]
,

r(k1, k2, k3)
t(k1, k2, k3)

= −
(

k3

k1

)1/2

e+i(k3−k1)a

×
[
(k3 − k2 + iκ)(k2 + k1 − iκ)

4k3k2
e+2ik2a

+
(k3 + k2 + iκ)(k2 − k1 + iκ)

4k3k2
e−2 ik2a

]
,

where κ = 2mg/~2. Evidently, AI is the amplitude of
the plane wave impinging upon the biased double delta-
-barrier from the left-hand side, AIr(k1, k2, k3) gives the
amplitude of its reflected wave and AIt(k1, k2, k3)

√
k1/k3

the amplitude of its transmitted wave. It is also evident
that BIII is the amplitude of the plane wave impinging
upon the biased double delta-barrier from the right-
-hand side, −BIIIr

∗(k1, k2, k3)t(k1, k2, k3)/t∗(k1, k2, k3)
gives the amplitude of its reflected wave and
BIIIt(k1, k2, k3)

√
k3/k1 the amplitude of its trans-

mitted wave. Obviously (vide also Appendix B), the
quantities t(k1, k2, k3) and r(k1, k2, k3), respectively, give
the transmission amplitude and the reflection amplitude.
Actually, r(k1, k2, k3) is the reflection amplitude from
the left and −r∗(k1, k2, k3)t(k1, k2, k3)/t∗(k1, k2, k3)
is the reflection amplitude from the right, they differ
only in a phase. The transmission coefficient is defined
as T (k1, k2, k3) = t∗(k1, k2, k3)t(k1, k2, k3). Evidently,
the reflection coefficient is given by R(k1, k2, k3) =
r∗(k1, k2, k3)r(k1, k2, k3) = 1− T (k1, k2, k3).

3. Transmission coefficient

After straightforward algebra, one can derive the trans-
mission coefficient T (k1, k2, k3) for the biased double
delta-barrier in an analytical form. It is to be obtained
from the following expression:

4k3k
2
2k1

T (k1, k2, k3)
= 4k3k

2
2k1

+(k3 − k1)2 [k2 cos(2k2a) + κ sin(2k2a)]2

+
[
2κk2 cos(2k2a) + (κ2 − k2

2 + k3k1) sin(2k2a)
]2

.
If a = 0, one gets the transmission coefficient for the

biased single delta-barrier of the twofold strength [13]:

Ta=0(k1, k2, k3) =
4k3k1

(k3 + k1)2 + (2κ)2
.

Putting k3 = k1 =
√

2mEx/~ in T (k1, k2, k1) one eas-
ily obtains the transmission coefficient for the double
delta-barrier with a rectangular well in between [11]; the
well has the depth eV/2 and the width 2a,

T (k1, k2, k1) = (4k2
2k

2
1)

/{
4k2

2k
2
1

+
[
2κk2 cos(2k2a) + (κ2 − k2

2 + k2
1) sin(2k2a)

]2 }
.

If there is no external voltage applied to the dou-
ble delta-barrier, i.e. if V = 0, then k3 = k2 =
k1 =

√
2mEx/~ = k and the transmission coefficient

T (k1, k2, k3) is reduced to the transmission coefficient for
the unbiased double delta-barrier [8–11],

T (k, k, k) =
4k4

4k4 + κ2 [2k cos(2k2a) + κ sin(2k2a)]2
.

If κ = 0, one gets the transmission coefficient for the
two-step rectangular well, the first well has the depth
eV/2 and the width 2a, the second well has the depth
eV and extends to infinity,

Tκ=0(k1, k2, k3) = (4k3k
2
2k1)

/{
4k3k

2
2k1

+(k3 − k1)2k2
2 cos2(2k2a) + (k2

2 − k3k1)2 sin2(2k2a)
}

.

If κ = 0 as well as a = 0, one gets the transmission
coefficient for the one-step rectangular well [5, 6, 13].

4. Attributes of the transmission coefficient

In Fig. 2, the transmission coefficient T (k1, k2, k3) as
a function of the longitudinal energy Ex of the trans-
mitting electron is presented for four different applied
voltages V . The effective mass m of the transmitting
electron is supposed to be 0.067m0, where m0 is the free
electron mass; the width 2a of the biased double delta-
-barrier is taken as 5.0 × 10−9 m, and its strength g as
(2.0× 10−9 m)(0.50 eV). These numerical values are also
used in the other calculations. It is seen that the transi-
tion coefficient T (k1, k2, k3) exhibits relative maxima and
relative minima. Outside the strong lower-energy peaks
at small applied voltages, the transmission coefficient is
clearly a smooth function of the longitudinal energy of
the transmitting electron.
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Fig. 2. (a) and (b) Natural logarithm of the transmis-
sion coefficient for the biased double delta-barrier at
various applied voltages V versus the longitudinal en-
ergy of the transmitting electron, the barrier width is
5.0×10−9 m. In (a), the dotted curve is at V = 0.00 V,
the dash-dotted curve at V = 0.10 V, the dashed curve
at V = 0.20 V, the full curve at V = 0.30 V; in (b),
the full curve is at V = 0.40 V, the dashed curve at
V = 0.60 V, the dash-dotted curve at V = 0.80 V, the
dotted curve at V = 1.00 V.

Evidently, two independent resonance conditions must
be satisfied simultaneously so that the transmission coef-
ficient T (k1, k2, k3) could be equal to unity, i.e. a trans-
mission through the biased double delta-barrier could be
ideal. One is the maximum condition for the peak value,
2κk2 cos(2k2a) + (κ2 − k2

2 + k3k1) sin(2k2a) = 0, and the
other is the phase-difference condition, k2 cos(2k2a) +
κ sin(2k2a) = 0. However, these two resonance condi-
tions cannot be satisfied simultaneously. Thus, a trans-
mission through the biased double delta-barrier never be-
comes ideal (in the limit Ex → ∞, the transmission co-
efficient T (k1, k2, k3) goes to unity).

To find local extremes in the transmission coefficient
T (k1, k2, k3), one has to find the first derivative of
T (k1, k2, k3) with respect to Ex and equate it to zero.
It is valid,

dT (k1, k2, k3)
dEx

∼= aT 2(k1, k2, k3)
k3k2

2k1

dk2

dEx

× [
2κk2 cos(2k2a) + (κ2 − k2

2 + k3k1) sin(2k2a)
]

× [
2κk2 sin(2k2a)− (κ2 − k2

2 + k3k1) cos(2k2a)
]
.

This approximation for first derivative is justifiable
only when the double delta-barrier is wide enough and
is under the application of a small external voltage, i.e.
when 1 ¿ a

√
2mEx/~ and eV ¿ Ex.

Thus, the incomplete resonant energy Ex, max i.e. the
energy, at which the transmission coefficient T (k1, k2, k3)
has a relative maximum, approximately obeys the maxi-
mum condition for the peak value, 2κk2 cos(2k2a)+(κ2−
k2
2 +k3k1) sin(2k2a) = 0. When this maximum condition

is satisfied, the transmission coefficient T (k1, k2, k3) takes
the form

Tmax(k1, k2, k3)

=
4k3k1

4k3k1 + (k3−k1)2(κ2+k2
2−k3k1)2

4κ2k2
2+(κ2−k2

2+k3k1)2

.

It is easy to obtain that Ta=0(k1, k2, k3) <
Tmax(k1, k2, k3) as far as κ 6= 0. If κ = 0 then
Ta=0(k1, k2, k3) = Tmax(k1, k2, k3). In the range of small
applied voltages, when eV ¿ Ex, then k3

∼= k1 is valid,
and therefore Tmax(k1, k2, k3) ∼= 1.

It should be recalled that the ideal transmission
through the double barrier structure (the transmission
without a reflection) is a result of the constructive in-
terference between the waves just transmitting through
the first barrier and those being reflected off the second
one. The stronger the barriers are, the smaller the in-
tensity of the transmitted waves is and the more pro-
nounced the interference becomes. In the case of the
transmissions through the biased double delta-barrier,
there also exists some constructive interference between
the waves just transmitting through the first delta-barrier
and those being reflected off the second one. Unlike the
transmissions through the unbiased double delta-barrier
[9–11], the constructive interference in the biased dou-
ble delta-barrier is not strong enough to cause the ideal
transmission. Thus, the applied voltage reduces the con-
structive interference between the waves in the double
delta-barrier. The constructive interference between the
waves is also reduced in the asymmetrical double delta-
-barrier [14]. Generally, the asymmetry reduces the con-
structive interference [1]. From Fig. 2 it is seen that the
higher the applied voltage, the smaller is the lower incom-
plete resonant energy. The lower-energy peak, however,
disappears at an applied voltage of about 0.4 V.

Evidently, the energy Ex, min, at which the trans-
mission coefficient T (k1, k2, k3) has a relative mini-
mum, should approximately obey the minimum condi-
tion for the valley value, 2κk2 sin(2k2a) − (κ2 − k2

2 +
k3k1) cos(2k2a) = 0. If this minimum condition is satis-
fied, the transmission coefficient T (k1, k2, k3) can be ar-
ranged into the next form

Tmin(k1, k2, k3)

=
4k3k

2
2k1

(κ2 + k2
2 + k3k1)2 + (κ2+k2

2+k3k1)2(k3−k1)2κ2

4κ2k2
2+(κ2−k2

2+k3k1)2

.

There also exists some destructive interference between
the waves just transmitting through the first delta-barrier
and those being reflected off the second one. There-
fore, one expects that Tmin(k1, k2, k3) < Ta=0(k1, k2, k3).
This inequality between the transmission coefficients
Tmin(k1, k2, k3) and Ta=0(k1, k2, k3) is satisfied as far as
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(k3 − k1)2κ4k3k1 +
(k3 − k1)6(2κ2 + k2

2 + k3k1)
8

< κ8 + 2κ6(k2
2 + k3k1).

In the range of small applied voltages, when k3
∼= k1,

the previous inequality is certainly satisfied. It is also
satisfied if the transmissions occur through the double
delta-barrier that is enough strong, i.e. if k ¿ κ. In such
cases, it is to be expected that the minimum condition
of the transmission coefficient T (k1, k2, k3) is properly
expressed by the minimum condition for the valley value,
and the transmission coefficient Tmin(k1, k2, k3) gives a
proper value of the transmission coefficient T (k1, k2, k3)
in its minimum.

In Fig. 3 the transmission coefficients T (k1, k2, k3),
Tmin(k1, k2, k3), Tmax(k1, k2, k3), and Ta=0(k1, k2, k3) are
drawn as a function of the longitudinal energy Ex at the
applied voltage of 0.30 V. In Fig. 4 they are drawn as
a function of the applied voltage V ; the longitudinal en-
ergy Ex of the transmitting electron is taken as 0.0025 eV.
In both the figures, the full curve depicts the transmis-
sion coefficient T (k1, k2, k3), the dashed curve shows the
transmission coefficient Ta=0(k1, k2, k3) and the dotted
curves show the transmission coefficients Tmax(k1, k2, k3)
and Tmin(k1, k2, k3). These curves demonstrate the valid-
ity of the inequality Tmin(k1, k2, k3) < Ta=0(k1, k2, k3) <
Tmax(k1, k2, k3). It is also seen that the transmission coef-
ficients Tmin(k1, k2, k3) and Tmax(k1, k2, k3), respectively,
trace minima and maxima of the transmission coefficient
T (k1, k2, k3) rather well, at least at low applied voltages.

Fig. 3. Natural logarithm of the transmission coeffi-
cient at the applied voltage of 0.30 V versus the longi-
tudinal energy of the transmitting electron, the barrier
width is 5.0 × 10−9 m. The full curve is the transmis-
sion coefficient for the biased double delta-barrier, the
dashed curve is the transmission coefficient for the bi-
ased single delta-barrier of the twofold strength, and the
dotted curves are the transmission coefficients giving the
maximum and minimum value of the transmission prob-
ability.

In Fig. 5 the transmission coefficient T (k1, k2, k3) as a
function of the applied voltage V is presented for three
different widths 2a of the biased double delta-barrier;
the longitudinal energy Ex of the transmitting electron
is again taken as 0.0025 eV. It is seen that the barrier
width 2a strongly influences both the voltage Vmax and
the voltage Vmin, at which the local maximum and lo-

Fig. 4. Natural logarithm of the transmission coeffi-
cient at the longitudinal energy of 0.0025 eV versus the
applied voltage, the barrier width is 5.0× 10−9 m. The
full curve is the transmission coefficient for the biased
double delta-barrier, the dashed curve is the transmis-
sion coefficient for the biased single delta-barrier of the
twofold strength, and the dotted curves are the trans-
mission coefficients giving the maximum and minimum
value of the transmission probability.

Fig. 5. Natural logarithm of the transmission coeffi-
cient at the longitudinal energy of 0.0025 eV versus the
applied voltage for three different values of the barrier
width 2a; the full curve is for 2a = 12.5 × 10−9 m, the
dashed curve for 2a = 10.0× 10−9 m, the dotted curve
for 2a = 7.5× 10−9 m.

cal minimum occur, respectively. The graphs show that
they are shifted towards smaller values in a wider barrier.
As it is expected, the number of maxima and minima is
increased in the wider double delta-barrier.

All the attributes of the transmission coefficient for
the biased double delta-barrier are expected to manifest
themselves in the current–voltage characteristics of the
biased double delta-barrier.

5. Tunnelling current

Generally (vide e.g. [1, 2]), the current density through
a biased barrier structure may be computed as

j(V ) =
4πme

(2π~)3

∫ ∞

0

dE

∫ E

0

[
f(E)− f(E + eV )

]

×T (Ex, V )dEx.

Here E is the energy of the transmitting electron mea-
sured from the bottom of the conduction band of the un-
biased region of the barrier structure. Further, f(E) =
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[1 + exp ((E − EF)/kBθ)]−1 is the Fermi–Dirac distribu-
tion function at the absolute temperature θ with EF be-
ing the Fermi energy and kB is the Boltzmann constant;
V is the voltage applied to the structure, T (Ex, V ) ≡
T (k1, k2, k3) is the transmission coefficient as a function
of the longitudinal energy Ex of the transmitting electron
at the applied voltage V . In the limit θ → 0, the above
expression for the current density becomes

j(V ) =
4πme

(2π~)3

[∫ EF

0

(EF − Ex)T (Ex, V )dEx

−Θ(EF − eV )
∫ EF−eV

0

(EF − eV − Ex)

×T (Ex, V )dEx] .
Figure 6 shows the calculated current density through

the biased double delta-barrier at zero absolute temper-
ature as a function of the applied voltage (the numer-
ical value of j0 is to be calculated from the expression
j0 = 4πmeE2

F/(2π~)3). In the calculation, the Fermi en-
ergy EF is assumed to have a low value of 0.0050 eV. The
current density in Fig. 6 shows almost the identical oscil-
latory behaviour as the transmission coefficient in Fig. 4
when the applied voltage is increased. This oscillatory
behaviour is also demonstrated in Fig. 7 where the cal-
culated current density at zero absolute temperature is
drawn as a function of the applied voltage for three dif-
ferent widths 2a of the biased double delta-barrier. It is
seen that the graphs in Fig. 7 are very similar to those
in Fig. 5.

Fig. 6. Natural logarithm of the current density
through the biased double delta-barrier at zero abso-
lute temperature versus the applied voltage, the barrier
width is 5.0× 10−9 m.

For a very low value of the Fermi energy, when the
transmission coefficient T (Ex, V ) at a particular volt-
age V smoothly varies with the longitudinal energy Ex

on the interval from zero to the Fermi energy, one has
j(V ) ∼= 2πmeE2

FT (EF/2, V )/(2π~)3 = j0T (EF/2, V )/2.
That is the reason why the graph of j(V ) is very similar to
the graph of T (EF/2, V ). Thus, when the Fermi energy is
very low, it can be said that a maximum in current den-
sity, which is accompanied by a region of negative differ-
ential conductance, appears at the applied voltage Vmax

at which the incomplete resonant energy Ex, max of the
biased double delta-barrier matches the Fermi energy. It

Fig. 7. Natural logarithm of the current density
through the biased double delta-barrier at zero abso-
lute temperature versus the applied voltage for three
different values of the barrier width 2a; the full curve
is for 2a = 12.5 × 10−9 m, the dashed curve for 2a =
10.0× 10−9 m, the dotted curve for 2a = 7.5× 10−9 m.

is also evident that a minimum in current density appears
at the applied voltage Vmin when the energy Ex,min, at
which the local minimum in the transmission coefficient
for the biased double delta-barrier occurs, matches the
Fermi energy.

Fig. 8. The peak-to-valley ratio in the current–voltage
characteristics versus the barrier width; the full curve is
for the first peak and the first valley, the dashed curve
for the second peak and the second valley.

The graphs in Fig. 7 also suggest that the ratio
of the peak value to the valley value in the current–
voltage characteristics can be modulated with the bar-
rier width. For a very low value of the Fermi en-
ergy, the peak-to-valley ratio is approximately given by
jp/jv ∼= T (EF/2, Vmax)/T (EF/2, Vmin). In Fig. 8 the cal-
culated peak-to-valley ratio is presented as a function of
the width 2a of the double delta-barrier. The full curve
shows the peak-to-valley ratio for the first peak and the
first valley, the dashed curve for the second peak and
the second valley. Both the calculated curves are very
smooth. Thus, the barrier width can easily be chosen to
give a particular value of the peak-to-valley ratio.

6. Concluding remarks

We presented the solution to the transmission problem
in the biased double delta-barrier that represents a simple
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model of the biased double barrier structure. The exact
formula of the transmission coefficient has been employed
for the numerical calculation of the current density. The
numerical results show that the current density exhibits
the same oscillatory behaviour as the transmission coef-
ficient. Thus, the negative differential resistance in the
current–voltage characteristics appears at a voltage that
corresponds to a transmission-coefficient peak. The nu-
merical results also show that a particular value of the
peak-to-valley ratio in the current–voltage characteris-
tics can be obtained with the modulation of the barrier
width. The numerical values used throughout the calcu-
lation, the effective mass m of the transmitting particle
and the Fermi energy EF, correspond to GaAs, while the
strength g of the delta-barriers to Al1−xGaxAs, vide e.g.
[1–3]. The calculation can easily be extended to other
similar sandwich structures.

The great advantage of this simple model is that the
transmission coefficient can be calculated analytically.
However, the possible variations in the width and in the
height of the biased double barrier structure are taken
into account only in a very simple way and the effective-
-mass variation in the double barrier structure is fully lost
in this approach. Still, similar numerical results were
obtained for more realistic model of the biased double
barrier structure [1–3].

Appendix A

Two connection formulae are to be obtained from the
continuity condition for the wave function ϕ(x) at the
points x1 = −a and x2 = +a. It is valid, ϕ(−a + 0) =
ϕ(−a− 0) and ϕ(a + 0) = ϕ(a− 0). Thus,

AI e− ik1a + BI e+ik1a = AII e− ik2a + BII e+ik2a,

AII e+ik2a + BII e− ik2a = AIII e+ik3a + BIII e− ik3a.
A formal integration of the Schrödinger equation

around the points x1 = −a and x2 = +a leads to the rela-
tions, which express the discontinuity of the first deriva-
tive of the wave function at those two points; vide e.g.
[8, 9]. It is valid, ϕ′(−a+0)−ϕ′(−a−0) = 2mgϕ(−a)/~2

and ϕ′(a + 0)− ϕ′(a− 0) = 2mgϕ(a)/~2, where ϕ′(x) =
dϕ(x)/dx. These two discontinuity relations yield two
other connection formulae. Thus,

ik2(AII e− ik2a −BII e+ik2a)

− ik1(AI e− ik1a −BI e+ik1a)

= κ(AI e− ik1a + BI e+ik1a),

ik3(AIII e+ik3a −BIII e− ik3a)

− ik2(AII e+ik2a −BII e− ik2a)

= κ(AII e+ik2a + BII e− ik2a),

where κ = 2mg/~2.
It is appropriate to use the transfer-matrix method

[1, 12]. Therefore, the connection formulae are to be

rewritten in the form of matrices[
AII

BII

]
= M(II, I)

[
AI

BI

]
,

[
AIII

BIII

]
= M(III, II)

[
AII

BII

]
.

The elements of the transfer matrices M(II, I) and
M(III, II) are given by

M11(II, I) = M∗
22(II, I) =

k2 + k1 − iκ
2k2

e+i(k2−k1)a,

M12(II, I) = M∗
21(II, I) =

k2 − k1 − iκ
2k2

e+i(k2+k1)a,

M11(III, II) = M∗
22(III, II) =

k3 + k2 iκ
2k3

e− i (k3−k2)a,

M12(III, II) = M∗
21(III, II) =

k3 − k2 − iκ
2k3

e− i (k3+k2)a.

It is easy to show that detM(II, I) = k1/k2 and
detM(III, II) = k2/k3.

The two consecutive transfers are to be joined into
one,[

AIII

BIII

]
= M(III, II)M(II, I)

[
AI

BI

]
= M(III, I)

[
AI

BI

]
,

where
M11(III, I) = M∗

22(III, I)

=
(k3 + k2 − iκ)(k2 + k1 − iκ)

4k3k2
e− i (k1−2k2+k3)a

+
(k3 − k2 − iκ)(k2 − k1 + iκ)

4k3k2
e− i (k1+2k2+k3)a

=
(

k1

k3

)1/2 1
t∗(k1, k2, k3)

,

M12(III, I) = M∗
21(III, I)

=
(k3 + k2 − iκ)(k2 − k1 − iκ)

4k3k2
e+i(k1+2k2−k3)a

+
(k3 − k2 − iκ)(k2 + k1 + iκ)

4k3k2
e+i(k1−2k2−k3)a

= −
(

k1

k3

)1/2
r∗(k1, k2, k3)
t∗(k1, k2, k3)

.

It is easy to obtain that

detM(III, I) = det M(III, II) det M(II, I) =
k1

k3

=
k1

k3

1− r(k1, k2, k3)r∗(k1, k2, k3)
t(k1, k2, k3)t∗(k1, k2, k3)

.

Evidently, r(k1, k2, k3)r∗(k1, k2, k3) = 1 − t(k1, k2, k3)
t∗(k1, k2, k3) is valid. The new-introduced quantities
t(k1, k2, k3) and r(k1, k2, k3) enable one to express the
relation between the amplitudes in the first and third
spatial region in the very simple form,

BI = AIr(k1, k2, k3) + BIIIt(k1, k2, k3)
(

k3

k1

)1/2

,
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AIII = AIt(k1, k2, k3)
(

k1

k3

)1/2

−BIII
r∗(k1, k2, k3)t(k1, k2, k3)

t∗(k1, k2, k3)
.

Appendix B

The presentation of the physical significance of the
quantities t(k1, k2, k3) and r(k1, k2, k3) is to be started
with the calculation of the probability-current-density
function, j(x) = ~[ϕ∗(x)∂ϕ(x)/∂x − ϕ(x)∂ϕ∗(x)/∂x]
/2im. On the left-hand side of the biased double
delta-barrier, it is

jI(x) = [1− r∗(k1, k2, k3)r(k1, k2, k3)] A∗I AI
~k1

m

−t∗(k1, k2, k3)t(k1, k2, k3)B∗
IIIBIII

~k3

m

−[r∗(k1, k2, k3)t(k1, k2, k3)A∗I BIII

+t∗(k1, k2, k3)r(k1, k2, k3)B∗
IIIAI]

~
√

k1k2

m
.

On the right-hand side of the biased double delta-barrier,
it is

jIII(x) = t∗(k1, k2, k3)t(k1, k2, k3)A∗I AI
~k1

m

− [1− r∗(k1, k2, k3)r(k1, k2, k3)] B∗
IIIBIII

~k3

m

−[r∗(k1, k2, k3)t(k1, k2, k3)A∗I BIII

+t∗(k1, k2, k3)r(k1, k2, k3)B∗
IIIAI]

~
√

k1k2

m
.

Evidently, the probability-current-density function
j(x) is constant, jIII(x) = jI(x). If BIII = 0, the
wave function δ(x) consists of three terms. The first
term, AI e+ik1x, represents a plane wave that is in-
cident on the biased double delta-barrier from −∞.
The interaction with the biased double delta-barrier
produces a reflected plane wave, r(k1, k2, k3)AI e− ik1x,
which escapes to −∞, and a transmitted plane wave,

√
k1/k3t(k1, k2, k3)AI e+ik3x, which moves off to +∞.

It is seen from the above equation that the incident
flux, the reflected flux, and the transmitted flux are
A∗I AI~k1/m, r∗(k1, k2, k3)r(k1, k2, k3)A∗I AI~k1/m and
t∗(k1, k2, k3)t(k1, k2, k3)A∗I AI~k1/m, respectively. Thus,
the quantities t(k1, k2) and r(k1, k2) give the transmis-
sion amplitude and the reflection amplitude, respec-
tively. The transmission and reflection coefficient are
given by T (k1, k2, k3) = t∗(k1, k2, k3)t(k1, k2, k3) and
R(k1, k2, k3) = r∗(k1, k2, k3)r(k1, k2, k3), respectively. If
AI = 0, the wave function ϕ(x) can be interpreted in a
similar fashion. Its three terms represent a plane wave,
which is incident on the biased double delta-barrier from
+∞, a reflected plane wave, which escapes to +∞, and
a transmitted plane wave, which moves off to −∞.
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