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Thermal Conductivity of Square-Well Fluids
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The thermal conductivity of a system consisting of square-well particles has been determined by the extension
of the Enskog formula of the hard-sphere model to square-well fluid. The approach is the same as applied for the
diffusion coefficients and shear viscosity of square-well fluid. The addition of an attractive part in the hard-sphere
potential such as square-well potential remains insensitive to influence the thermal conductivity. The results
obtained are in a good agreement with the molecular dynamics results.

PACS numbers: 66.25.+g

1. Introduction

The knowledge of the transport coefficients such as
shear viscosity, self-diffusion coefficients, and thermal
conductivity of liquids is indispensable for the under-
standing of industrial applications. Their molecular the-
oretical calculations are the principle aims of kinetic the-
ory and non-equilibrium dynamics. While the transport
properties at low densities are well understood through
the Chapman–Enskog theory [1] of the hard-sphere (HS)
system, the dense hard fluids are far from being under-
stood. Dense hard-spheres possess enough attributes of
many-body systems and are understood with kinetic and
mode coupling theories [2–4]. There are very few theoret-
ical studies reported in the literature for thermal conduc-
tivity of dense fluids. However, molecular dynamic simu-
lation results for simple fluids are available in the litera-
ture [5–9] for hard-sphere system and Lennard–Jones flu-
ids. Heyes and Powles [10] have calculated thermal con-
ductivity of steeply repulsive potential (SRP) in which
the particles interact with a potential φ(r) = ε(σ/r)n

where n = ∞ represents the hard-sphere system. Michels
and Trappeniers [11] have calculated the thermal con-
ductivity of the square-well fluids by means of molecular
dynamical computer simulations.

In the present work, thermal conductivity of a square-
-well fluid has been determined by the application of
improved Enskog formula [12, 13] of a hard-sphere sys-
tem. The hard-sphere system has been transformed
into a square-well system by changing appropriate pair-
-correlation function at contact. This method was found
successful in the determination of diffusion coefficients
and shear viscosity of a square-well fluid, as described in
our previous works [14, 15].

2. Theory

The square-well fluid is an excellent model for a liquid
in which the internal degrees of freedom of the individual
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atoms are not important. The pair potential for a square-
-well fluid is defined as:

φ(r) =





∞, r ≤ σ,

−ε, σ < r < λσ,

0, r ≥ λσ,

(1)

where r is the radial coordinate, σ is the diameter of hard
core, λσ is the diameter of the surrounding well and ε is
the magnitude of attractive part of the potential. The
well width is considered as λ = 1.5 throughout this paper.

Consider a collective property transport coefficient X
representing either bulk or shear viscosity, or the thermal
conductivity. The Green–Kubo formula for this quantity
is

X = A

∫ ∞

0

〈B(s′ + 1)B(s′)〉s′ dt, (2)

where 〈· · ·〉s′ is a time correlation function averaged over
a sampling time s′ which is also the simulation time in
practice. The property B would be the shear stress for
the shear viscosity, P (t)−〈P 〉 for the bulk viscosity [P (t)
is the instantaneous pressure and 〈P 〉 is the average pres-
sure], or the heat flux for the thermal conductivity. The
constant A is a simple function of numerical prefactors
and basic constants such as the volume of the system (V ),
the temperature T , and Boltzmann’s constant kB. It is
convenient to define a normalized time correlation func-
tion

C(t) = 〈B(s′ + t)B(s′)〉s′
/ 〈B2(s′)〉s′ . (3a)

Substitution of Eq. (3a) in Eq. (2) gives

X = C∞

∫ ∞

0

C(t)dt, (3b)

where
C∞ = A〈B2〉. (3c)

For the heat flux correlation function, C∞ = M∞, the so-
-called “thermal modulus” which was derived in Ref. [10].
The time correlation function C(t) can be decomposed
into three separate functions, one derived entirely from
the interaction potential, second which is purely kinetic,
and another that is a mix of kinetic and interaction
parts. For thermal conductivity, these parts are defined
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by Michels and Trappeniers as kinetic term (κk), poten-
tial term (κp) and cross term (κc).

The unnormalized heat flux time correlation function
of a hard-sphere fluid consists of a singular term s, which
is entirely collisional part (cc) and a non-singular part u,
which has kinetic part and a cross term (kc) and the
remainder of the collisional part (cc). The nonsingular
part of the heat flux relaxation function is

CT (t) = M ′
∞ exp(−t/τλ), (4)

where
M ′
∞

kB
=

5
3
ρkBT

[
1 +

3
5
(Z − 1)

]2

(5)

and τλ = 5
√

π/[16(Z − 1)] in hard-sphere reduced units.
The improved Enskog formula for the thermal conduc-

tivity of the pure hard sphere fluid, κ, is [13]:

κ

κ0
=

ρb

Z − 1

[(
1 +

3
5
(Z − 1)

)2

+
32
25π

(Z − 1)2
]

, (6)

where b = (2πσ3/3) is second virial coefficient of the hard
sphere fluid, Z is the compressibility factor defined as:

Z = 1 +
2
3
πρ∗gHS(σ), (7)

where ρ∗ is reduced density (= ρσ3) and gHS(σ) is the
contact pair correlation function for hard-sphere fluid and
can be calculated from the Carnahan and Starling [16]
equation

gHS(σ) =
1− η/2
(1− η)3

, (8)

where η = πρσ3/6 is the packing fraction of hard sphere.
The value of the thermal conductivity in the limit of

zero density, κ0, from kinetic theory, is given by

κ0

kB
= 1.02513

75
64σ2

(
kBT

mπ

)1/2

. (9)

As in the Green–Kubo formula, the time correlation
function of the hard-sphere fluid can be divided into sin-
gular and non-singular parts. The Enskog formula can
also be divided into singular and non-singular parts of
the thermal conductivity. The singular component of the
thermal conductivity κS is

κS

κ0
=

64
75

ρσ3(Z − 1) (10)

and the non-singular part κu is
κu

κ0
=

ρb

Z − 1

[
1 +

3
5
(Z − 1)

]2

. (11)

Up to Eq. (11), we have described the hard-sphere sys-
tem. We have developed a method to calculate the trans-
port properties of square-well system from a hard sphere
system from Yu et al. work [17] (equation (3) of their
paper). In this we have investigated that the transport
property of a hard sphere system can be transformed
into square-well system by replacing gHS(σ), pair corre-
lation function of hard sphere from gSQ(σ), pair correla-
tion function of square-well system in the expression of a
particular transport property. This has been found cor-
rect for diffusion coefficient [14] and shear viscosity of the

dense fluids [15]. Thus, thermal conductivity can be ob-
tained by employing pair correlation function of square-
-well fluid. The sum of Eqs. (10) and (11) will give the
same results after modification of Z.

Thus, the thermal conductivity for square-well fluid
can be obtained by replacing pair correlation function
gHS(σ) in Eq. (7) by gSQ(σ) as [17]:

gSQ(σ) = gSW(σ) + λ2gSW(λσ)E. (12)
The gSW(σ) and gSW(λσ) are the radial distribution

functions evaluated at the points σ and λσ, respectively.
The quantities E and gSW(λσ) are defined as [17]

E = exp
(

ε

kBT

)
−

(
ε

kBT

)
− 2J, (13)

where J is the temperature dependent function as [17]

J =
0.5 + 0.28304/T ∗

1 + 0.15360/T ∗
(14)

and

gSW(λσ) = gHS(λσ) exp
(

α

T ∗
+

β

T ∗2

)
, (15)

where T ∗ = kBT/ε. The value of α and β were deter-
mined to be −0.4317 and −0.1177, respectively. The
value of the radial distribution function for the hard-
-sphere fluid at λσ can be determined from the corre-
lation by Monnery et al. [18]:

gHS(λσ) = 0.99948 + 0.82404η − 3.46976η2. (16)
This correlation matches the Monte Carlo (MC) simula-
tion results of Barker and Henderson [19] and is success-
fully applied in the calculation of diffusion coefficient by
Yu and co-workers [17].

For square-well fluid, the pair correlation function
gSW(σ) can be written in high temperature approxima-
tion (HTA) [20] as

gSW(σ) = gHS(σ) +
1

4T ∗
∂aSW

1

∂η
+

λ3

T ∗
gHS(λσ), (17)

where aSW
1 is the first order perturbation term associated

with attractive energy εφ and is given below [21]:

aSW
1 = −4η(λ3 − 1)

1− ηeff/2
(1− ηeff)3

(18)

and
ηeff = C1η + C2η

2 + C3η
3, (19)

where the coefficients Cn are given by matrix [21]:


C1

C2

C3


 =




2.25855 −1.50349 0.249434
−0.669270 1.40049 −0.827739
10.1576 −15.0427 5.30827







1
λ

λ2


 . (20)

3. Results and discussion

The square-well fluid is one of the simplest ones pos-
sessing the basic characteristic of real fluids. It has



1046 R. Srivastava, K.N. Khanna

proved to be the excellent model for a liquid as it
holds the characteristic nature of hard-sphere collisions.
Longuet-Higgest and Valleau [22] were first to use square-
-well model to describe the self-diffusion coefficients of
dense fluids. Davis, Rice, and Sengers [23] developed
a theory, called DRS theory analogously to the Enskog
hard-sphere (EHS) theory for the calculations of trans-
port coefficients of square-well fluids.

In the present work, we have calculated the thermal
conductivity of square-well fluids employing the Enskog
theory. Figure 1 shows the thermal conductivity for
a square-well fluid as a function of reduced well-depth
(ε∗ = 1/T ∗) at various reduced densities. The numeri-
cal results presented in this paper are explained in the
reduced units of thermal conductivity as described by
Michels and Trappeniers [11]. It can be seen in Fig. 1
that the well-depth of the square-well fluid predicts a very
small change in thermal conductivity where the change in
diffusion coefficients and shear viscosity is larger [14, 15].
However, the change in the density of the fluid makes
a significant change in the thermal conductivity of the
square-well fluid. The present results are compared with
the molecular dynamics results of the Michels and Trap-
peniers [11] at various well-depth (ε∗) and densities. We
find a good agreement between the present theoretical
results and molecular dynamic results of Michels and
Trappeniers. Michels and Trappeniers [11] have com-
pared their molecular dynamic results with those pre-
dicted by DRS theory [23]. DRS theory predicts val-
ues sufficiently lower than molecular dynamic results of
Michels and Trappeniers [11] at all densities. This means
that the improved Enskog theory, applied in the present
work, is much better than DRS theory. We find that the
theoretical values obtained in the present work are higher
than that of predicted molecular dynamic results [11].

Fig. 1. The reduced thermal conductivity (κ∗) of
square-well fluid as the function of the reduced well
depth (ε∗) at various reduced densities (ρ∗). Symbols
are MD results of Michels and Trappeniers [11].

In the present work we present the radial distribution
function at the point of contact of square-well fluid, i.e.
the radial distribution function at the distance of the
centers of the molecules at the moment of a collision for
a square-well molecule. In the present work, this char-

Fig. 2. The reduced thermal conductivity (κ∗) for
square-well fluid as the function of the reduced density
(ρ∗). The solid line is for ε∗ = 0.2, big dashed line
for ε∗ = 0.5 and the small dashed line for ε∗ = 0.76,
and the dashed dot dot line represents reduced thermal
conductivity for hard-sphere fluid as the function of re-
duced density. Symbols are MD results of Michels and
Trappeniers [11]. ¤ for ε∗ = 0.2, ♦ for ε∗ = 0.5 and 4
for ε∗ = 0.76.

Fig. 3. The singular component of reduced thermal
conductivity (κs∗) as the function of reduced density
(ρ∗). The solid line represents singular component of
reduced thermal conductivity for hard-sphere fluid and
the small dashed line represents the singular component
of reduced thermal conductivity for square-well fluid at
ε∗ = 0.76.

acteristic feature has been explored by calculating pair-
-correlation function at contact in high temperature ap-
proximation [20, 21]. It appears that ηeff employed in the
calculations of the mean attractive energy plays an im-
portant role in the determination of thermal conductivity.
This may be one reason that our results are better than
DRS theory and it gives a good agreement with molecular
dynamic results of Michels and Trappeniers [11].

Comparing the results with the hard-sphere system, it
can be seen in Fig. 2 that the addition of an attractive
part in the hard-sphere (square-well potential) is rather
insensitive to the influence of the thermal conductivity.
It is due to the fact that the kinetic, the potential and
cross terms partially cancel each other. The addition
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Fig. 4. The non-singular component of reduced ther-
mal conductivity (κu∗) as the function of reduced den-
sity (ρ∗). The solid line represents non-singular compo-
nent of reduced thermal conductivity for hard-sphere
fluid and the small dashed line represents the non-
-singular component of reduced thermal conductivity for
square-well fluid at ε∗ = 0.76.

of attractive part on hard-sphere (square-well fluid) low-
ers the values of both the kinetic and cross term while
the potential term increases with increasing well-depth.
To show the insensitivity of attractive part in thermal
conductivity, we have also calculated the singular and
non-singular parts of thermal conductivity separately in
Figs. 3 and 4, respectively. The singular part of square-
-well fluid remains higher than singular part of thermal
conductivity of hard-sphere system at low and medium
densities and ultimately merges into singular part of the
hard-sphere system at high densities. Similarly, non-
-singular part of the square-well fluid remains lower than
non-singular part of hard-sphere fluid at low densities and
merges into non-singular part of thermal conductivity of
the hard-sphere system at high densities. Thus both sin-
gular and non-singular parts of the thermal conductivity
of square-well fluid remain the same as obtained in hard-
-sphere system at high densities while they are different
at low and medium densities.

4. Conclusion

The study concludes that thermal conductivity is a
property of liquids which does not depend on reference
systems such as HS and square-well while other proper-
ties such as viscosity and diffusion coefficients depend on
reference system.
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