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Electron Avalanche Statistics
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A solution of the long-lasting problem with anomalous population statistics of pre-streamer avalanches has
been proposed in the form of a new generalized probability density function.

PACS numbers: 52.80.–s, 52.80.Dy, 52.80.Mg

1. Introduction

Since the times of the founders of streamer the-
ory — Raether [1], Loeb [2] and Meek [3] — a spe-
cial attention has been paid to high populated elec-
tron avalanches possessing potential to overgrowing into
streamers. One of the basic problem that has not been
resolved so far concerns anomalous statistical behavior
of big avalanches with electron populations n > 104.
The mentioned anomaly consists in systematic devia-
tions [1, 4, 5] from the Furry/exponential distribution
[6, 7], w(n) = 1/〈n〉[1− 1/〈n〉]n−1 ≈ 1/〈n〉 exp(−n/〈n〉),
which has been considered as a general statistical law
holding for all avalanches regardless of their size. Experi-
mental evidence based on different testing methods [8–13]
has identified the Pareto probability density function
w(n) = const · n−(1+D) as a reliable distribution of high
populated avalanches. However, this result would imply
the existence of two independent statistics (Furry’s and
Pareto’s) governing simultaneously one group of identi-
cal objects but such a dual concept is hardly acceptable.
Here we show that there is a generalized statistical distri-
bution which unifies both the mentioned statistics and in
this way we remove the long-lasting problem of anoma-
lous pre-streamer statistics. So far the anomalous statis-
tics of big avalanches have been considered as experimen-
tal artifact [1]. Experimental evidence employing various
experimental techniques [8–11] has shown that this is not
the case and that the phenomenon has a real physical
background. Our derivation of the generalized statistical
distribution demonstrates how a special superposition of
elementary functions may generate a new functional form
showing perfect power law behavior, which is character-
istic for fractal phenomena. This result has a broader
meaning, namely, it supports the idea that fractal phe-
nomena can result from a collective acting of more el-
ementary processes that may be represented by prop-
erly chosen elementary functions. We anticipate that
the new approach to the populations statistics of elec-
tron avalanches may assist in improving relevant parts of
streamer theory since statistical behavior of pre-streamer
avalanches inevitably determines the statistics of their
streamer successors.

2. Fractal multiplication of electron avalanches

The Pareto statistics is a “typical fractal” statistics
since it governs statistical features of all self-similar frac-
tals with dimension D. This fact was taken into ac-
count when formulating the scenario of fractal avalanche
multiplication [11]. The multiplication counts on dis-
placed smaller avalanches that accompany big parent
avalanches. The displaced avalanches are initiated by
photoionization only after the parent avalanche has
passed a certain critical distance ∆̄ long enough to create
sufficiently intensive UV-radiation. On the track ∆̄ the
parent avalanche accumulates a certain number of elec-
trons N̄ = exp(α∆̄) where α is the first Townsend ion-
ization coefficient. The number of displaced avalanches
is equal to the so-called “multiplicity” K̄. As soon as the
displaced avalanches overcome the critical distance ∆̄,
they become parent avalanches for displaced avalanches
of the second generation. The number of the displaced
avalanches in the second generation is K̄2. In this way
the process may continue to still higher generations j. It
is the length d of the discharge gap that limits the num-
ber of generations Jmax = d/∆̄− 1. But the process may
also terminate before it reaches the last possible gener-
ation Jmax, i.e. j = 0, 1, 2, . . . J ≤ Jmax. The proba-
bility density function of the j-th generation wj(n) =
K̄j/〈nj〉[1 − 1/〈nj〉]n−1 ≈ K̄j/〈nj〉 exp(−n/〈nj〉) pos-
sesses its own mean population 〈nj〉 = exp(α(d − j∆̄)).
Summing the probability density functions over all gen-
erations, a new probability function F (n) may be found

F (n) =
1
n̄d

J∑

j=0

(K̄N̄)j

(
1− N̄ j

n̄d

)n−1

≈ 1
n̄d

J∑

j=0

(K̄N̄)j exp
(
−nN̄ j

n̄d

)
, (1)

n̄d = exp(αd), N̄ ≥ 1, K̄ ≥ 1,

J ≤ Jmax =
d

∆̄
− 1, D =

ln K̄

ln N̄
. (2)

Since the whole process is highly stochastic, the mean
values n̄d, K̄, N̄ , and ∆̄ are employed. Function (1) com-
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Fig. 1. Log–log plots of probability density func-
tion (1): (A) The “waves” on the graph represent gen-
erations of displaced avalanches. (B) “Unified waves”
form a linear section which corresponds to power law
behavior. After [11].

prises both the Furry and Pareto distributions as two spe-
cial cases: taking J = 0 the Furry distribution emerges
whereas for J ≥ 1 and suitable input parameters the log–
log graph shows a linear section representing the Pareto
power law behavior (Fig. 1).

3. Generalized population statistics

Unfortunately, function (1), when fitted to experimen-
tal data, yields very low values of N̄ lying usually in the
interval (1, 3). Earlier measurements [4] of population
statistics in air at normal atmospheric conditions indi-
cated a critical value N0 ≈ 7 × 104 as a necessary mini-
mum population with which avalanches began to deviate
from the Furry distribution. Therefore, the values N̄ and
N0 should be comparable and not so essentially different.
The reason for this discrepancy is caused by non-included
inner space charges whose electric fields compete with
the background field in the discharge gap. The influence
of inner space charges cannot be neglected especially in
big avalanches with high electron populations. A conse-
quence of action of inner space charges consists in low-
ering the value of α with increasing electron populations
n [1, 5]:

α(n) = α0

[
1−B ln

(
n

N0

)]
,

N0 ≤ n ≤ 108. (3)
For air it is anticipated [1, 4] B ≈ 0.07, N0 ≈ 7×104 and
α0 is a constant corresponding to the first Townsend ion-
ization coefficient in the unperturbed background electric
field. Dependence (3) represents a typical behavior of the
so-called pre-streamer avalanches n ∈ (104, 108) but at
higher populations, n > 108, photoionization completely
replaces collisional ionization and majority of avalanches
are converted into streamers. In the streamer region the
value of α(n) quickly restores its initial value α0 and in-
creases further α(n) À α0. However, an exact depen-
dence α(n) is not known for streamers. Nevertheless, for
pre-streamer avalanches (N̄ = N0) it is possible to deter-
mine a law of growing populations n(d):

dn = α(n)ndx, (4)
∫ n

N̄

dn

n
[
1−B ln

(
n
N̄

)] =
∫ d

∆̄

α0dx, (5)

n(d) = N̄ exp
(

1
B

(
1− exp

(
1−Bα0(d− ∆̄)

)))
,

N̄ ≤ exp(α0d) ≤ 108. (6)
Using (6), the mean population n̄j of the displaced
avalanches of the j-th generation can be determined

n̄j(d)

= N̄ exp
(

1
B

(
1− exp

(
1−Bα0(d− (j + 1)∆̄)

)))

=
c̄

ĀM̄j+1 , (7)

where

c̄ = N̄ exp
(

1
B

)
,

Ā = exp
(

1
B

exp (1−Bα0d)
)

,

M̄ = exp
(
Bα0∆̄

)
= N̄B. (8)

Equation (7) enables to formulate a new generalized
probability density function which takes into account the
influence of inner space charges

F (n) =
1
c̄

J∑

j=0

K̄jĀM̄j+1

[
1− ĀM̄j+1

c̄

]n+1

≈ 1
c̄

J∑

j=0

K̄jĀM̄j+1
exp

(
−nĀM̄j+1

c̄

)
. (9)

Function (9) is also capable to generate the Pareto power
law behavior. Nevertheless, there is an important differ-
ence between functions (1) and (9) consisting in interpre-
tation of the parameters N̄ and ĀM̄ = ĀN̄B

. In contrast
to function (1) the probability density (9), when fitted
to experimental data (Fig. 2), provides N̄ ≈ 6.8 × 104

in very good agreement with the value N0 ≈ 7 × 104

predicted by earlier experiments [4]. This is due to the
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Fig. 2. Population statistics registered as voltage
pulses across a resistance (100 kΩ) associated with the
UV-photomultiplier.

included action of the inner space charge field that inter-
feres with the background field in the gap and as a result
the total field between the electron head and ion tail be-
comes weaker which causes lowering of α(n) values (3).
As a consequence, the electron population n(d) grows
“under-exponentially” (6) which inevitably modifies the
statistics (1) and leads to a new analytical form (9). Al-
though both forms (1) and (9) are probability density
functions that include the Furry and Pareto statistics as
two special cases (J = 0 and J ≥ 1), only the generalized
form (9) provides a right description of statistical behav-
ior of pre-streamer avalanches and becomes an adequate
representative of the pre-streamer statistics.

4. Conclusion

Probability density function (9) provides a rigorous so-
lution of the long-lasting problem concerning anomalous
avalanche statistics, which were considered earlier as ex-

perimental artifacts [1]. Furthermore, function (9) gener-
ates the fractal power law behavior by means of a super-
position of many elementary functions, which may sup-
port the concept of multi-componential nature of fractal
phenomena.
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