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Tsallis Entropies of Superposition States
of Two Photon-Subtracted SU(1, 1) Coherent States

and Entanglement Transfer to Qubits
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Entropy properties of the superposed photon-subtracted two-mode coherent states are quite different from
that of the single state. Tsallis entropies of the superposed states have extreme values, while that of the single
state change monotonously. Further, it is found that the positions of the maxima of the entropies are independent
of the entropic index. Around the maxima of the entropies, the entanglement transfer from the superposed states
to two initially separable qubits is nearly complete.

PACS numbers: 42.50.Dv, 03.65.Ud, 05.70.−a

1. Introduction

As an important type of two-mode continuous variable
correlated states, the SU(1, 1) coherent state [1, 2] has
attracted a lot of investigations including its squeezing
and statistical properties [3], superpositions [4], entan-
glement properties and entanglement transfer to qubits
[5–8]. In quantum information network, a continuous
variable system easily propagates entanglement while a
qubit system is easy to manipulate. Therefore, the stud-
ies of entanglement transfer from a continuous variable
system to a qubit system [6–12] are primary important
due to their practical applications. The former investi-
gations show that the entanglement of the qubits seems
irrelevant of the magnitude of the entanglement of the
initial continuous variable field [6].

In this paper, we study the following superposition
states of two photon-subtracted SU(1, 1) coherent states

|ψm(ξ, p)〉 = (ab)m(|ξ, p〉+ δ e iϕ
∣∣e iβξ, p

〉
)/
√

N, (1)
where |ξ, p〉 is the SU(1, 1) coherent state [1, 2], a, b are
the annihilation operators of the field modes, δ, ϕ, β are
all real parameters, m is an integer, N is a normalization
factor (to be given below). States (1) are the superpo-
sitions of the two photon-subtracted SU(1, 1) coherent
states (ab)m|ξ, p〉 and (ab)m|e iβξ, p〉. Of course, states
(1) can also be named the photon-subtracted superpo-
sition states of two SU(1, 1) coherent states |ξ, p〉 and
|e iβξ, p〉. In the case of m = 0, the states (1) are the
superpositions of two SU(1, 1) coherent states differing
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in phase by β. The angle 0 ≤ ϕ ≤ 2π affects the interfer-
ence of the two coherent states. When δ = 1, β = π and
ϕ = 0, π, the state |ψ0(ξ, p)〉 becomes the even and odd
SU(1, 1) coherent states. When δ 6= 1, the superposition
coefficients are different in magnitude.

Using the scheme proposed in [4], the state |ψ0(ξ, p)〉
can be generated by assuming that initially the two-level
atom is in the state (|g〉+ δ e iϕ|e〉)/√1 + δ2 and the field
in the state |ξ, p〉. To generate |ψm(ξ, p)〉, we inject a
two-level atom in the ground state into a cavity prepared
in the state |ψ0(ξ, p)〉. In the case of on-resonant inter-
action and a very short interaction time [13], the wave
function of the whole system becomes

|ψ(t)〉 = exp
(− igt(a+b+ |g〉 〈e|+ ab |e〉 〈g|)) |ψ0〉 |g〉

≈ [1− igt(a+b+ |g〉 〈e|+ ab |e〉 〈g|)] |ψ0〉 |g〉
= |ψ0〉 |g〉 − igtab |ψ0〉 |e〉 . (2)

Then, the state of the atom is detected. If the atom
is found to be in the excited state, the field will be in
the state ab|ψ0(ξ, p)〉, which is a photon-subtracted su-
perposition state. Repeating the process gives the state
|ψm(ξ, p)〉. For p = 0, the state |ξ, p〉 becomes the two-
-mode squeezed vacuum state [6] and |ψm(ξ, p)〉 is the su-
perposed photon-subtracted two-mode squeezed vacuum
states. Our calculations mainly focus on this case.

For pure states, entanglement can be measured by the
linear entropy [5, 14] or the entropy of the reduced den-
sity matrix [15, 16]

SR = −Tr (ρA log2 ρA) , (3)
where ρA = TrBρAB is the reduced density matrix with
ρAB being the density matrix of the system having two
subsystems A and B. The entropy of the reduced density
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matrix and the linear entropy are special cases of the
Tsallis entropies [17–20]:

Sq =
1

q − 1
(1− Trρq

A) , (4)

where q is the entropic index. For q = 1, 2, the Tsal-
lis entropies (3) reduce to the entropy of the reduced
density matrix (3) and the linear entropy, respectively.
Therefore, as a unified description of entanglement, we
may calculate the Tsallis entropies. The Tsallis entropies
have been used to describe many complex physical phe-
nomena such as hydrodynamic turbulence [21], fluxes of
cosmic rays [22], astrophysics [23], etc. There are also
many discussions about using the non-extensive statisti-
cal mechanics to describe quantum entanglement [24–30].

In this paper, we study the Tsallis entropies of the
Schrödinger cat states (1) and the entanglement trans-
fer to two initially separable qubits. Numerical calcula-
tions show that when δ > 0 and ϕ, β are both around
π, the Tsallis entropies of (1) have extreme values and
the positions of the maxima are independent of the en-
tropic index q. Furthermore, at the maxima of the Tsal-
lis entropies, the entanglement of the two qubits takes
maximum values. Our arrangements are as follows. The
next section is the Tsallis entropies of the superposition
states (1). The third section is the entanglement transfer
from the superposition states to qubits. The final section
is the summary.

2. Entanglement of the superposition states

For p = 0, the SU(1, 1) coherent state [1, 2] reduces to
the two-mode squeezed vacuum state

|ξ, 0〉 = A0

∞∑
n=0

ξn |n, n〉 , (5)

where A0 = (1 − |ξ|2)1/2 is the normalization constant
and |ξ| ≡ r is less than one. In terms of Fock states, the
wave function (1) can be rewritten as

|ψ〉 =
∞∑

n=0

Cn |n, n〉 ,

Cn =
A0√
N

(
1 + δ e iϕ+iβ(n+m)

) m∏

k=1

(n + k)ξn+m. (6)

The normalization factor is found to be

N = A2
0

∞∑
n=0

[
1 + δ2 + 2δ cos(ϕ + βn + βm)

]

×
[
|ξ|n+m

m∏

k=1

(n + k)

]2

. (7)

The corresponding Tsallis entropies are

Sf =
1

q − 1

(
1−

∞∑
n=0

ρq
n

)
, ρn =

∣∣C2
n

∣∣ , (8)

where the subscript “f” means field.
At first we point out that Tsallis entropies of the

photon-subtracted SU(1, 1) coherent state (ab)m|ξ, p〉
change monotonously, which is similar to that of a sin-

gle two-mode coherent state [5, 6]. Without loss of gen-
erality, we set δ > 0 for the superposition states (1).
Numerical calculations show that for odd m, the Tsal-
lis entropies change monotonously, too. However, for
even m, the Tsallis entropies have extreme values when
ϕ, β are around π as seen from Fig. 1 for δ = 1.30, m = 4
and ϕ = β = π. One may notice that the position of
the maxima is independent of the entropic index q. In
Fig. 1, the maxima appear at r = 0.026 for different q.
For ϕ = 0.95π, β = π, the maxima are found to be at
r = 0.031. At the maxima of the Tsallis entropies, the
entropy of the reduced density matrix is near one. We
see that for different entropic index q, the values of the
Tsallis entropies are different, but the behaviors are simi-
lar. That is to say, using the Tsallis entropies to measure
the entanglement is appropriate.

Fig. 1. Tsallis entropies versus |ξ| for p = 0, m = 4,
δ = 1.30, ϕ = π, β = π. The three curves (from top to
bottom) correspond to q = 1, 1.2, 1.95, respectively.

Numerical calculations also show that the extreme
value of the Tsallis entropies vanishes when ϕ = β = π
and δ ∼= 1. This conclusion is true for arbitrary m. If ϕ
or β is not π, there will be extreme values for the whole
range δ, roughly speaking from 0.4 to 2.5.

To understand the properties of the Tsallis entropies
qualitatively, for odd m we rewrite the wave function (6)
as (To be mathematically simple, here we take the case
ϕ = β = π as an example.)

|ψ〉 =
ξmA0√

N

∞∑
n=0

ξ2n[(1 + δ)
m∏

k=1

(2n + k) |2n, 2n〉

+ ξ(1− δ)
m∏

k=1

(2n + k + 1) |2n + 1, 2n + 1〉]. (9)

For even m, the state (6) can be cast into

|ψ〉 =
ξmA0√

N

∞∑
n=0

ξ2n[(1− δ)
m∏

k=1

(2n + k) |2n, 2n〉

+ ξ(1 + δ)
m∏

k=1

(2n + k + 1) |2n + 1, 2n + 1〉]. (10)
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The terms within the square bracket in (9) or (10) have
the form of the following Bell-like entangled number
states:

|ψ〉 =
√

x |n, n〉+ e iθ
√

1− x |n + 1, n + 1〉 , (11)
where 1 ≥ x ≥ 0 and θ is real. The Tsallis entropies of
the entangled number states are

Sq =
1

q − 1
[1− xq − (1− x)q] , (12)

which is zero for x = 0, 1 and has a maximum at x = 1/2.
The position x = 1/2 of the maximum entropy is inde-
pendent of the entropic index q. At the maximum, the
absolute values of the coefficients before the two Fock
states |n, n〉 and |n + 1, n + 1〉 are equal:

√
x =

√
1− x.

Applying this condition to (9), we have

|ξ| = 1 + δ

|1− δ|

∏m
k=1(2n + k)∏m

k=1(2n + k + 1)
, (13)

which is greater than one for 2.5 > δ > 0.4 and arbi-
trary n. For the state (10), we have

|ξ| = |1− δ|
(1 + δ)

∏m
k=1(2n + k)∏m

k=1(2n + k + 1)
, (14)

which is less than one. As |ξ| is less than one for the
states (1) or (6), it is understandable that there are no
maxima for odd m and exist maxima for even m.

In the next section, we will see that the maxima of the
Tsallis entropies are very important to the entanglement
transfer from the superposition states (1) to initially sep-
arable qubits.

3. Entanglement transfer from the superposition
states to qubits

In interaction picture, the qubit–field interaction
Hamiltonian is

HaI = (∆a/2)σz + ga(|e〉 〈g| a + a+ |g〉 |e〉), (15)
where |g〉 and |e〉 denote, respectively, the ground and
excited states of the qubit, σz is the Pauli matrix, ∆a de-
notes the detuning between the field mode frequency and
the corresponding qubit transition frequency. Replacing
a by b in (15), we have the interaction Hamiltonian of
mode b with the other qubit. The time evolution opera-
tor of the whole system is then

U(t) = ua(t)⊗ ub(t), (16)
where

ua(t) = exp (− iHaIt) =
[

cos(Aat)− i ∆a sin(Aat)
2Aa

− igaa sin(Bat)
Ba

− igaa+ sin(Aat)
Aa

cos(Bat) + i ∆a sin(Bat)
2Ba

]
,(17a)

Aa =

√(
∆a

2

)2

+ g2
aaa+,

Ba =

√(
∆a

2

)2

+ g2
aa+a. (17b)

The operator ub(t) is obtained by replacing a with b
in (17). Assuming that the initial state of the field is

(1) and the two qubits are both at the ground states, the
wave function of the whole system at any time is

|ψ(t)〉 = U(t) |ψ〉 |gg〉 . (18)
The reduced density matrix for the two qubits is obtained
by tracing out the fields as

ρqu(t) = Trab |ψ(t)〉 〈ψ(t)| . (19)
After some calculations, the reduced density operator
(19) for the two qubits is derived

ρqu(t) =




A(t) 0 0 E(t)
0 B(t) 0 0
0 0 F (t) 0

E∗(t) 0 0 D(t)


 , (20)

where the matrix basis is chosen as {|ee〉, |eg〉, |ge〉, |gg〉}.
The coefficients in (20) are

A(t) =
∞∑

n=0

n2

nanb

∣∣C2
n

∣∣ sin2(gat
√

na)

× sin2(gbt
√

nb), (21a)

B(t) =
∞∑

n=0

n

na

∣∣C2
n

∣∣ sin2(gat
√

na)

×
[
cos2(gbt

√
nb) +

∆2
b

4nbg2
b

sin2(gbt
√

nb)
]

, (21b)

F (t) =
∞∑

n=0

{
n

nb

∣∣C2
n

∣∣ [
cos2(gat

√
na)

+
∆2

a

4nag2
a

sin2(gat
√

na)
]

sin2(gbt
√

nb)
}

, (21c)

D(t) =
∞∑

n=0

{ ∣∣C2
n

∣∣ [
cos2(gat

√
na)

+
∆2

a

4nag2
a

sin2(gat
√

na)
]

×
[
cos2(gbt

√
nb) +

∆2
b

4nbg2
b

sin2(gbt
√

nb)
]}

, (21d)

E(t) = −
∞∑

n=0

{
n + 1√

(na + 1)(nb + 1)
(Cn)∗Cn+1

× sin(gat
√

na + 1) sin(gbt
√

nb + 1)

×
[
cos(gat

√
na)− i

∆a

2ga
√

na
sin(gat

√
na)

]

×
[
cos(gbt

√
nb)− i

∆b

2gb
√

nb
sin(gbt

√
nb)

]}
, (21e)

where

na = n +
(

∆a

2ga

)2

, nb = n +
(

∆b

2gb

)2

. (22)

Using (20) and (21), we can study the entanglement be-
tween the two qubits.

There are different ways to quantify the entanglement
of the two qubits, such as the concurrence [31, 32] and
the negativity of the partial transposition of the reduced
density matrix [33, 34]. The concurrence is defined as
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C = max
{

0, 2max[λi]−
∑4

i λi

}
(23)

with λi being the square roots of the eigenvalues of the
matrix R = ρquSρ∗quS, where S = σy ⊗ σy and ∗ stands
for the complex conjugate. For the present system, the
square roots of the eigenvalues of the matrix R are found
to be

λ1 =
∣∣∣
√

AD − |E|
∣∣∣ , λ2 =

√
AD + |E|,

λ3 = λ4 =
√

BF. (24)
The entanglement measure based on the negativity of
the partially transposed density matrix is ε = −2

∑
i λ−

i
,

where λ−
i
are negative eigenvalues of the partially trans-

posed density matrix [33, 34]. In our case, we have

ε =
√

(B − F )2 + 4|E|2 −B − F. (25)
Numerical calculations show that the concurrence and
the negativity are equal to each other for p = 0.

For ga = gb = g, the concurrence reaches its maximum
value at the scaled times gt = (0.5 + k)π (k is an inte-
ger). For example, when δ = 1.30, m = 4, ga = gb = 1,
∆a = ∆b = 0 and ϕ = 0.95π, β = π, the maximum
of the Tsallis entropies appears at r = 0.031 and the
concurrence C is 0.9995, 0.9996 and 0.9995 at the times
gt = π/2, 3π/2, 5π/2, respectively. At these times, the
two qubits are almost maximally entangled. If |ξ| devi-
ates from 0.031, the concurrence decreases obviously as
shown in Fig. 2 for gt = 3π/2.

From Fig. 1, one can see that the Tsallis entropies
become larger and larger when |ξ| is greater than 0.3.
However, the entanglement of the two qubits does not
increase with the increasing |ξ|, which agrees with the
former calculations using the single two-mode coherent
states [6]. Actually, for larger |ξ|, the concurrence be-
comes very small. For example, the largest possible con-
currence is about 0.1 for |ξ| = 0.6. The concurrence tends
to zero when |ξ| is greater than 0.7.

Fig. 2. Concurrence versus |ξ|.

The concurrence and negativity corresponding to other
maxima of the field (1) have similar behaviors. To un-
derstand the above effective entanglement transfer at the
maxima of the Tsallis entropies, it may be helpful to
consider the case that the initial field is the entangled
number states (11). For the entangled number states
(11), the concurrence and negativity are both C = ε =
2
√

x(1− x). Under the conditions that ∆a = ∆b = 0,
ga = gb = g and the qubits are initially at the ground
states, the concurrence and the negativity of the qubits
are found to be equal

C = ε = 2
√

x(1− x) cos2(ngt) sin2 ((n + 1)gt)

− 2x sin2(ngt) cos2(ngt)

− 2(1− x) sin2 ((n + 1)gt) cos2 ((n + 1)gt) . (26)
For even n, the concurrence and negativity (26) are
2
√

x(1− x) at the scaled times gt = (0.5 + k)π. In an-
other words, the entanglement of the field is completely
transferred to the qubits. When x = 1/2, the qubits are
maximally entangled. For odd n, there is no such result.

Now we have a look at the atomic state. For ga = gb

and ∆a = ∆b = 0, numerical calculations give A →
1/2, D → 1/2, E → −1/2, B → 0 and F → 0 at the
scaled times gt = (0.5 + k)π. Meanwhile, by calculating
the entropy Sqf = −Tr(ρqu log2 ρqu), we know that the
qubits and the fields are now disentangled. (The roots
of the reduced density matrix ρqu are r1 = B → 0, r2 =
F → 0, r3,4 = [(A + D)±

√
(A−D)2 + 4|E|2]/2 → 1, 0,

which results in Sqf → 0 or the qubits and the fields are
disentangled.) From these results, we can conclude that
the state of the two qubits evolves into (|ee〉 − |gg〉)/√2.

The detuning effects are also considered. It is shown
that when |∆j |/g1,2 ≤ 10%, the qubits still keep highly
entangled. For example, when δ = 1.25, r = 0.037,
m = 2, ga = gb = 1, ∆a = 0.1, ∆b = −0.1 and
ϕ = β = π, the concurrence C is 0.9945 and 0.9940 at
the scaled times gt = 3π/2, 5π/2, respectively.

When the two coupling constants are not the same,
the concurrence and negativity tend to decrease. For
m = 4, ∆1 = ∆2 = 0, gb = 1, δ = 1.30, r = 0.031,
ϕ = 0.95π, β = π and ga = 1.01, 1.02, 1.03, 1.06,
1.07, the corresponding concurrences are, respectively,
0.9992, 0.9988, 0.9981, 0.9945, 0.9928. When β = 1.03π
(r = 0.047), g1 = 1.03, 1.05, the values of the concur-
rence are 0.9965, 0.9920. Calculations show that the con-
currence and negativity are greater than 0.99 so long as
|ga − gb|/ga,b ≤ 6%.

In case that the particle number difference p is not zero,
the concurrence and negativity become much smaller.
For example, when p = 2, δ = 1.30, r = 0.022, m = 4,
∆1 = ∆2 = 0, ga = gb = 1 and ϕ = β = π, the largest
possible concurrence is 0.974 at gt = 4.53.

From the above discussions, we see that when m is even
and ϕ, β are around π, the concurrence and negativity of
the two qubits tend to unit. In other words, the two
qubits are nearly maximally entangled.
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4. Summary

We have studied the Tsallis entropies of the superposed
photon-subtracted two-mode squeezed vacuum states
and the entanglement transfer to two initially separa-
ble qubits. For odd m, there are no special results. But
for even m, a new phenomenon appears: the Tsallis en-
tropies can have extreme values. Further, the positions
of the maxima are independent of the entropic index q.
When the Tsallis entropies take the extreme values, the
two qubits can be almost maximally entangled. The ini-
tial field and the qubit–field interaction Hamiltonian pre-
sented here can be realized experimentally. Hence, the
results presented in this paper can be tested.

References

[1] C.C. Gerry, J. Opt. Soc. Am. B 8, 685 (1991).
[2] C.C. Gerry, R.E. Welch, J. Opt. Soc. Am. B 9, 290

(1992).
[3] L. Gilles, P.L. Knight, J. Mod. Opt. 39, 1411 (1992).
[4] C.C. Gerry, R. Grobe, J. Mod. Opt. 44, 41 (1997).
[5] A.S. Agarwal, A. Biswas, J. Opt. B 7, 350 (2005).
[6] W. Son, M.S. Kim, J. Lee, D. Ahn, J. Mod. Opt. 49,

1739 (2002).
[7] M. Paternostro, W. Son, M.S. Kim, G. Falci,

G.M. Palma, Phys. Rev. A 70, 022320 (2004).
[8] J. Zou, J.G. Li, B. Shao, J. Li, Q. Shuli, Phys. Rev. A

73, 042319 (2006).
[9] J. Hald, J.L. Sorensen, C. Schori, E.S. Polzik, J. Mod.

Opt. 47, 2599 (2000).
[10] M. Paternostro, W. Son, M.S. Kim, Phys. Rev. Lett.

92, 197901 (204).
[11] M. Paternostro, G. Falci, M.S. Kim, G.M. Palma,

Phys. Rev. B 69, 214502 (2004).
[12] X.F. Qian, Y. Li, Y. Li, Z. Song, C.P. Sun, Phys.

Rev. A 72, 062329 (2005).

[13] G.S. Agarwal, K. Tara, Phys. Rev. A 43, 492 (1991).
[14] D.A. Meyer, N.R. Wallach, J. Math. Phys. 43, 4273

(2002).
[15] M.B. Plenio, V. Vedral, Contemp. Phys. 39, 431

(1989).
[16] S.M. Barnett, S.J.D. Phoenix, Phys. Rev. A 40, 2204

(1989); S.M. Barnett, P.L. Knight, J. Opt. Soc. Am. B
2, 467 (1985).

[17] C. Tsallis, J. Stat. Phys. 52, 479 (1988).
[18] A.R. Plastino, A. Plastino, Phys. Lett. A 177, 177

(1993).
[19] C. Tsallis, S.V.F. Levy, A.M.C. Souza, R. Maynard,

Phys. Rev. Lett. 75, 3589 (1995).
[20] N.G. de Almeida, Physica A 387, 2745 (2008).
[21] C. Beck, Phys. Rev. Lett. 87, 180601 (2001).
[22] C. Tsallis, J.C. Anjos, E.P. Borges, Phys. Lett. A 310,

372 (2003).
[23] C. Tsallis, D. Prato, A.R. Plastino, Astrophys. Space

Sci. 290, 259 (2004).
[24] S. Abe, A.K. Rajagopal, Phys. Rev. A 60, 3461

(1999).
[25] S. Abe, A.K. Rajagopal, Physica A 283, 157 (2001).
[26] N. Canosa, R. Rossignoli, Phys. Rev. Lett. 88, 170401

(2002).
[27] J. Batle, A.R. Plastino, M. Casas, A. Plastino,

J. Phys. A 35, 10311 (2002).
[28] S. Abe, Physica A 306, 316 (2002).
[29] R. Prabhu, A.R.U. Devi, G. Padmanabha, Phys.

Rev. A 76, 042337 (2007).
[30] G. Wilk, Z. Wlodarczyk, Physica A 376, 279 (2007).
[31] S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022

(1997).
[32] W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[33] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[34] M. Horodecki, P. Horodecki, R. Horodecki, Phys.

Lett. A 223, 1 (1996).


