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Split Octonions and Maxwell Equations
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A formulation of the Maxwell equations in terms of the split octonions is presented.

PACS numbers: 03.50.–z, 03.50.De

1. Introduction

A well known multiplication rule for the imaginary
octonions [1], depicted schematically on the Fano plane,

may be generalized to the following multiplication table:

TABLE

e1 e2 e3 e4 e5 e6 e7

e1 −1 e4 e7 −e2 e6 −e5 −e3

e2 −e4 −1 e5 e1 −e3 e7 −e6

e3 −e7 −e5 ∓1 e6 ±e2 ∓e4 ±e1

e4 e2 −e1 −e6 −1 e7 e3 −e5

e5 −e6 e3 ∓e2 −e7 ∓1 ±e1 ±e4

e6 e5 −e7 ±e4 −e3 ∓e1 ∓1 ±e2

e7 e3 e6 ∓e1 e5 ∓e4 ∓e2 ∓1

In this table the upper sign corresponds to the multipli-
cation of the imaginary octonions and the lower sign to
the multiplication of the imaginary split octonions. Via
the above multiplication rules the 8-dimensional real
vector space

SpanR{1, e1, e2, e3, e4, e5, e6, e7}
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gets equipped with the structure of two (nonassociative)
algebras with unit 1. These two algebras are called octo-
nions for the upper sign in the table and the split octo-
nions for the lower sign.

In this letter we will use a vector-valued (split) octo-
nion Q = (e1, e2, e4) and its corresponding vector-valued
(split)octonion e7Q = (e7e1, e7e2, e7e4) = (e3, e6, e5).

2. Model

Consider now two vector fields on R4:
E : R4 → R3, (t, x, y, z) 7→ E = (Ex, Ey, Ez)

and
B : R4 → R3, (t, x, y, z) 7→ B = (Bx, By, Bz).

Define
F = Exe1 + Eye2 + Eze4 + Bxe3 + Bye6 + Bze5

= EQ + B(e7Q)

= (Ex+ e7Bx)e1 + (Ey+ e7By)e2 + (Ez+ e7Bz)e4

= (E + e7B)Q.

and
∂ = e1∂x + e2∂y + e4∂z + e7∂t.
Then using the above multiplication table and the

standard notation of vector calculus in R3 we have

∂F = −∇E +
(

∇×E ∓ ∂B

∂t

)
Q

+
(
−∇×B +

∂E

∂t

)
(e7Q) + (∇B)e7.

Thus we see that if we choose the split octonions (lower
sign), then

∂F = 0

is equivalent to the equations

∇E = 0, ∇×E = −∂B

∂t
,

∇B = 0, ∇×B =
∂E

∂t
.

(992)
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3. Remarks

Several remarks are in order:
Remark 0.1. Why the Nature prefers the split oc-

tonions rather than the octonions for the electromag-
netism?
Remark 0.2. It is interesting to note that F defined

above is not a generic imaginary split octonion. If we
were to choose a generic imaginary split octonion

F = Exe1 + Eye2 + Eze4 + Bxe3 + Bye6 + Bze5 + Se7,

where S = S(t, x, y, z) was arbitrary function on R4, then

∂F =
(
−∇E +

∂S

∂t

)
+

(
∇×E +

∂B

∂t

)
Q

+
(
−∇×B +

∂E

∂t
−∇S

)
(e7Q) + (∇B)e7.

In such case ∂F = 0 would correspond to

∇E =
∂S

∂t
, ∇×E +

∂B

∂t
= 0,

∇B = 0, −∇×B +
∂E

∂t
= ∇S.

These equations for (E, B) could be then interpreted as
the Maxwell equations for electromagnetic field (E, B)
generated by the charge density ρ = ∂S/∂t and the cur-

rent density j = ∇S. Let us note that to get the mag-
netic charge densities and magnetic currents we would
need to introduce the generic (not purely imaginary) split
octonion F .
Remark 0.3. Now the story is quite puzzling: an au-

tomorphism σ of the split octonions is an element of the
noncompact real form of the exceptional Lie group G2.
Since σ(∂F ) = σ(∂)σ(F ), then, if F satisfied the Maxwell
equations ∂F = 0, the transformed σ(F ) would sat-
isfy the equations σ(∂)σ(F ) = 0. But the transformed
field σ(F ) is a general split octonion; the transformed
derivative σ(∂) also is. The physical interpretation of the
σ-induced transformation on the space time coordinates
(t, x, y, z) and the electromagnetic field (E, B) would be
interesting.
Remark 0.4. After the acceptance of this note in this

journal I received a message from Prof. Murat Gunaydin,
who send me a copy of Refs. [2, 3], in which a similar for-
mulation of the Maxwell [3] (respectively Yang–Mills [2])
equations in terms of the split octonions was presented.
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