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Asymmetry Coefficients as Indicators of Chaos
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The aim of this paper is to present a new simple indicator of chaos derived from the dynamics of the motion.
For this purpose statistical methods are used. A function describing the motion of the analyzed system (in the
example under consideration, the time dependence of the angle of a damped driven pendulum, ω(t)) is recorded
in time intervals t ∈ 〈Ts, Tfk 〉, k = 1, 2, . . . K, with Tfk > Tfk−1 . Each of the recorded functions is considered as
a statistical distribution. The asymmetry coefficients of the set of distributions form a series and their behavior
in periodic and chaotic regions is compared. It is shown that the behavior of this series in the chaotic and in the
periodic regimes is entirely different. The changes of the asymmetry coefficients for the periodic cases are very
regular and for the chaotic ones — random. In periodic cases, the coefficients converge to zero when the length of
the distribution increases.

PACS numbers: 02.70.Rr, 95.10.Fh, 05.45.−a, 05.45.Gg, 05.45.Tp

1. Introduction

The distinction between chaotic and periodic behavior
of dynamical systems may be performed using different
kinds of criteria [1–4]. An excellent review of the prop-
erties of chaotic systems and a description of a variety of
indicators, may be found in the book by Gutzwiller [5].
The most commonly known indicators are the Lyapunov
exponents [6, 7]. The control of chaotic systems can also
be performed via time-series analysis [8]. An efficient
method of chaos detection (the relative Lyapunov indi-
cator) has been proposed in [9]. Other interesting inves-
tigations have been presented by Skokos et al. [10]. The
authors introduced quantities that clearly distinguish be-
tween the chaotic behavior and the quasiperiodic motion
on N -dimensional tori (the generalized alignment index,
GALI). The application and efficient computational tech-
nique of GALI indices has also been shown by the authors
in [11].

Usually only a limited set of the observational data
is available, and the task of determining whether the
observed motion is chaotic or periodic may be difficult
and the uncertainty of the results rather large. The best
known and the most spectacular application of such an
analysis is determining whether a hypothetical planetary
system is stable and, as a consequence, whether the hy-
pothesis that the system exists is valid [12, 13]. In such
cases the availability of simple and reliable indicators of
chaos is of a particular importance.

In this work we propose alternative, very simple and
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related to the observational data, statistical indicator of
chaos. The indicator has been obtained from an analysis
of the statistical behavior of an ensemble derived from the
time dependence of selected quantities characterizing the
motion: we analyze the shapes of functions ω(t) describ-
ing the time dependence of the angle of a pendulum. In
the analysis, the functions are treated as statistical distri-
butions characterized by their moments. The behavior of
the moments (in particular the asymmetry coefficients)
depends on the character of the motion: In the chaotic
regime it is different than in the periodic one.

Considering functions describing different kinds of
physical processes as statistical distributions character-
ized by some parameters related to different aspects of
their shapes is commonly used in many areas of physics
and leads to a variety of very useful methods. In particu-
lar, the principle of moments according to which the de-
gree of similarity of a pair of distributions is determined
by the number of the lowest statistical moments which
are equal for both distributions [14] has recently been ap-
plied by the present authors in the theory of molecular
similarity [15, 16] and in astrophysics [17]. Studies on the
shapes of the intensity distributions of spectra resulted
in the so-called statistical theory of spectra [18–20]. Also
a method of determining the envelopes of molecular elec-
tronic bands [21] or statistical studies on properties of
spectra of the Heisenberg Hamiltonian [22] may be men-
tioned in this context.

2. Method

Let Ω(t) be a function characterizing the motion we are
going to analyze. It may be the time dependence of the
angle of a pendulum, of the velocity or the position of a
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planet, etc. Let us define a time-series Ωk(t) ≡ {Ω(t), t ∈
〈Ts, Tfk

〉}, k = 1, 2, . . . K with a fixed Ts and Tf1 <
Tf2 < . . . TfK . The terms of the series are characterized
by the time intervals ∆Tk = Tfk

− Ts and are treated
as statistical distributions. The starting time Ts and the
final one Tfk

denote the beginning and the end of the k-th
distribution Ωk(t) and ∆Tk is its length. The asymmetry
coefficients of the distributions read

M ′′
q (k, ∆Tk) = N (k, ∆Tk)

∫ Tfk

Ts

(Ωk(t) + c)

×
[

t−M1(k, ∆Tk)√
M2(k, ∆Tk)−M1(k, ∆Tk)2

]q

, (1)

where

N (k, ∆Tk) =

[∫ Tfk

Ts

(Ωk(t) + c) dt

]−1

, (2)

Mn(k, ∆Tk) = N (k, ∆Tk)
∫ Tfk

Ts

[Ωk(t) + c] tn dt, (3)

n = 0, 1, 2, 3, . . . , q = 2j + 1, j = 1, 2, 3, . . . and c is a
numerical constant.

For a totally symmetric distribution M ′′
q are equal to

zero. Generally, M ′′
q can be negative or positive depend-

ing on the direction of the asymmetry.
Usually, in practical applications, Ω(t) is known from

experimental measurements. Then, its values are given
in a discrete set of points {τi}. The asymmetry coeffi-
cients of the discrete k-th distribution Ωtk read

M ′′
q (k, Nk) = N (k,Nk)

×
Nk∑

i=1

(Ωtk
i

+ c)

[
tki −M1(k, Nk)√

M2(k,Nk)−M1(k, Nk)2

]q

, (4)

where

N (k, Nk) =

[
Nk∑

i=1

(Ωtk
i

+ c)

]−1

, (5)

Mn(k,Nk) = N (k, Nk)
Nk∑

i=1

(Ωtk
i

+ c)
(
tki

)n
, (6)

n = 0, 1, 2, 3, . . . , q = 2j + 1, j = 1, 2, 3, . . . and c
is a numerical constant. Nk is the number of mea-
surement points in the k-th distribution, i.e. tki = τi,
i = 1, 2, . . . Nk, k = 1, 2, . . . K, with tk1 = Ts, tkNk

= Tfk

and N1 < N2 < . . . < NK (i.e. Tf1 < Tf2 . . . < TfK
).

Since Ts is the same for all k, the length of the k-th dis-
tribution is proportional to Nk (or to Tfk

).
The qualitative results are the same for all values of c,

as it will be shown in the subsequent chapter. However,
as it is in the theory of statistics, we have to operate
with positive distributions. Therefore we assume that
the conditions Ωk(t) + c ≥ 0 or Ωtk

i
+ c ≥ 0 are fulfilled

for continuous and discrete distributions, respectively.
As it will be shown, the dependence of the asymmetry

coefficients (the skewness M ′′
3 and the higher order asym-

metry effects described by M ′′
5 , and M ′′

7 ) on the lengths
of the distributions, in the periodic cases is essentially

different than in the chaotic ones. This difference of the
behavior is understandable: The periodic motion is, by
definition, self-similar over sufficiently large intervals of
time. The chaotic one does not exhibit, also by definition,
any self-similarity. On the other hand, taking a constant
value of Ts and a series of increasing values of Tf , we
can check how the asymmetry changes when the lengths
of the distributions increase. In this way we analyze the
self-similarity of Ω(t). We expect, and this expectation
is confirmed by the example discussed in the following
section, that for the periodic motion the asymmetry co-
efficients approach 0 while Tf (or the number of measure-
ment points, N , in a discrete case) approaches infinity.
In the case of chaos no regular asymptotic behavior is
expected.

3. Results and conclusions

Let us consider a damped driven pendulum. Accord-
ing to the Newton second law, the equation of motion for
the pendulum of mass m and length l can be written as

ml2
d2θ

dt2
+ γ

dθ

dt
+ mgl sin θ = A cos(ωDt). (7)

The lhs terms represent acceleration, damping, and grav-
itation. The rhs term is the driving force.

The equation of motion (7) can be written as a system
of three first order equations [23]:

dω

dt
= −(1/d)ω − sin θ + g cosφ,

dθ

dt
= ω,

dφ

dt
= ωD,





(8)

where ω(t) is the angle of the pendulum, d is the damp-
ing parameter, g is the forcing amplitude, and ωD is the
angular driving force. The variable φ is the phase of the
driving term. The natural frequency for small amplitudes
has been set equal to 1 and the time is dimensionless [24].
The terms sin θ and g cos φ are nonlinear. Chaos can ap-
pear for some particular values of g.

A detailed analysis has been performed for d = 2,
ωD = 2/3, and for four values of g: g = 1.07, g = 1.15,
g = 1.47, and g = 1.50. For g = 1.07 and for g = 1.47
the solutions are periodic while for g = 1.15 and for
g = 1.50 they are chaotic [23]. The differential equa-
tions (8) have been solved numerically. The main part
of the numerical integration code constitutes the proce-
dure RA15 [25]. The calculations have been performed
in equidistant points, i.e. τi+1 − τi = δ = const, for the
time series {τi}1000i=1 , τ1 = 1, δ = 1. The functions ω(t)
are plotted in Fig. 1.

The asymmetry coefficients have been evaluated ac-
cording to Eq. (4) with Ω(t) = ω(t) and c = π. The origin
of each distribution corresponds to the initial time Ts = 1
(fixed for all distributions). The final points (the ends)
of the distributions have been selected as Tfk

= 10k,
k = 1, 2, . . . 100. Since τ1 = 1 and δ = 1 in the consid-
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Fig. 1. Functions ω(t) for the damped driven pendu-
lum for different values of g.

Fig. 2. M ′′
3 for different values of g. The middle and

the bottom figures are the enlargements of the top one
for the periodic and for the chaotic cases, respectively.

Fig. 3. The same as in Fig. 2, but for M ′′
5 .

Fig. 4. The same as in Fig. 2, but for M ′′
7 .

ered example, the number of points in the k-th distribu-
tion Nk = Tfk

and Nk −Nk−1 = 10.
Figures 2–4 show the asymmetry coefficients (M ′′

3 , M ′′
5 ,

M ′′
7 ) as functions of the lengths of the distributions, i.e.

of the number of the measurement points in each k-th
distribution. The figures consist of three parts. In the
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Fig. 5. Logarithms of modules of M ′′
q . The symbols

are the same in all figures and are explained in the upper
one.

top sub-figures the ranges of M ′′
q have been selected in

such a way that all their values fit to the plot. The middle
and the bottom sub-figures are the enlargements of the
top one. They present, respectively, the periodic and the
chaotic cases.

Figure 2 presents the behavior of M ′′
3 . The difference

between the periodic and the chaotic motion is clear and
obvious. In the periodic cases the changes of the asym-
metry coefficients are big only for small values of N (i.e.
for short lengths of the distributions for which the period-
icity cannot be recognized). For N →∞ the asymmetry
coefficients converge to 0 (i.e. the distributions converge
to the totally symmetric functions). In chaotic cases, the
asymmetry coefficients behave in an irregular way. In
particular, no signs of convergence to 0 can be seen.

The conclusions derived from Fig. 3, where M ′′
5 is dis-

played, and from Fig. 4, which shows the behavior of
M ′′

7 , are very much the same. The only new feature is
the clearly oscillatory type of convergence.

A convenient way of presentation of these results can
be a diagram showing the behavior of the logarithms of
|M ′′

q |. As one can see in Fig. 5, log |M ′′
q | converge to large

negative values for the periodic cases. In case of chaos
there is no convergence and log |M ′′

q | are larger than for
periodic cases.

Another way of using this method can be an analysis
of the standard deviations of M ′′

q from the mean values,
σ(M ′′

q ). Table shows σ(M ′′
q ) calculated for N in the range

from 800 to 1000. The qualitative results are the same
for any N interval excluding the small N region. The

functions Ω have been shifted to the positive values using
different values of c. For all c the deviations are much
smaller for periodic cases than for the chaotic ones.

TABLE
Standard deviations σ(M ′′

q ).

c q g = 1.07 g = 1.15 chaos g = 1.47 g = 1.50 chaos

π 3 0.000012 0.001062 0.000012 0.013475

5 0.000074 0.005169 0.000072 0.048207

7 0.000334 0.020628 0.000324 0.159390

3.2 3 0.000012 0.001043 0.000012 0.013236

5 0.000073 0.005074 0.000071 0.047348

7 0.000328 0.020250 0.000319 0.156508

3.4 3 0.000011 0.000981 0.000011 0.012479

5 0.000068 0.004775 0.000067 0.044622

7 0.000309 0.019054 0.000303 0.147383

3.6 3 0.000011 0.000926 0.000011 0.011803

5 0.000065 0.004508 0.000064 0.042193

7 0.000291 0.017991 0.000288 0.139264

Summarizing, the asymmetry coefficients (AC) of the
considered distributions are a convenient tool for iden-
tifying symptoms of chaos due to simplicity for coding
and their clearly different behavior for the chaotic and
periodic orbits:

• A smooth convergence to 0 in the periodic cases
and an irregular, random distribution of AC in the
case of chaos;

• A convergence to large negative values of log |AC|
for the periodic cases and no convergence in the
case of chaos;

• Close to 0 values of σ(AC) for the periodic cases.
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