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Magnetization, anomalous Hall effect, thermoelectric power, magnetoresistance, and resistivity of
Sn1−x−y−zGexMnyGdzTe (x = 0.039 ÷ 0.597, y = 0.077 ÷ 0.125, z = 0.0014 ÷ 0.028) mixed crystals were
studied over the temperature range 4.2–300 K. The ferromagnetic order with Curie temperature 18–24 K was
revealed.

PACS numbers: 72.20.My, 75.50.Pp, 72.80.Ga

1. Introduction

The family of IV–VI semiconductors notices attention
due to possibility of its wide applications in different
fields of electronics [1, 2]. The special interest is attracted
by diluted magnetic semiconductors (DMSs) based on
IV–VI host matrices doped with 3d and 4f transition
metals [3]. These DMSs exhibit ferromagnetic (FM) or-
dering caused by indirect exchange interaction of the
magnetic ions via the hole gas [4, 5]. Moreover, IV–VI
semiconductors are characterized by phase transforma-
tions of ferroelectric type. At present, the searches for
DMSs with high Curie temperature for spintronics appli-
cations are still in progress. It is interesting to study the
effect of the simultaneous presence of two magnetic ions
types in IV–VI semiconductor host on magnetic proper-
ties of resulting DMS.

2. Experimental results and discussion

Sn1−x−y−zGexMnyGdzTe (x = 0.039 ÷ 0.597; y =
0.077 ÷ 0.125; z = 0.0014 ÷ 0.028) bulk crystals were
grown by modified Bridgman method. X-ray diffraction
studies showed that these DMS crystallize in the NaCl
crystal structure. The chemical composition was deter-
mined by X-ray fluorescent analysis, which displayed that
the content of Mn and Gd changes opposite one another
along the ingot. Multimeter Keithley 2700/E with data
acquisition system was used for transport measurements.
Magnetic properties were investigated using a SQUID
magnetometer over the temperature range 5–100 K.

The SQUID magnetometry studies of magnetization
M of Sn1−x−y−zGexMnyGdzTe crystals (typical result is

∗ corresponding author; e-mail: georgl@isp.kiev.ua

shown in Fig. 1) have revealed the FM transition with the
Curie temperature TC = 18÷ 24 K. The latter decreases
with the increase of Gd content. It should be noted that
M(T ) in zero-field-cooled and field-cooled regime showed
a difference only for samples with high Mn content op-
posite to Ge1−x−ySnxMnyTe [6]. The M(H) dependence
(inset to Fig. 1) was not measured below the Curie tem-
perature because of huge magnetic signal.

Fig. 1. Temperature dependence of magnetization of
Sn1−x−y−zGexMnyGdzTe (x = 0.227, y = 0.088,
z = 0.0066). The inset shows the M(H) dependence
at T = 19 K.

The transport measurements revealed semimetallic
(typical of degenerated semiconductors) p-type conduc-
tivity for all samples. A weak feature on resistivity ρ(T )
dependence near TC was observed (Fig. 2). For the sam-
ples with low Ge content a kink on ρ(T ) dependence at
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T = 165–175 K was discovered. The latter coincides with
a bend on temperature dependence of thermopower α(T )
(Fig. 2), which testifies to phase transition to cubic phase
at temperature increase. Negative magnetoresistance of a
very small magnitude (0.2% at H = 6.5 kOe, T = 4.2 K)
appeared below 40 K. Its small value can be explained by
dominant role of spin-independent scattering processes
due to high concentration of metal vacancies in IV–VI
semiconductors.

Fig. 2. Resistivity and thermopower as a function
of temperature measured for Sn1−x−y−zGexMnyGdzTe
(x = 0.039, y = 0.077, z = 0.028) sample. The ver-
tical arrow indicates a bend on α(T ) dependence at
T = 170 K. The dashed line is guide to the eyes.

Fig. 3. The magnetic field dependence on the Hall re-
sistivity at T = 4.2 K for Sn1−x−y−zGexMnyGdzTe
(x = 0.227, y = 0.088, z = 0.0066) sample.

The dependence of Hall resistivity ρH versus magnetic
field measured at T = 4.2 K displayed large contribu-

tion of anomalous Hall effect proportional to magnetic
moment (Fig. 3), which is another proof of FM state in
Sn1−x−y−zGexMnyGdzTe crystals. At H > 1 kOe weak
increase in ρH due to input of normal Hall effect was ob-
served. Calculated hole concentration and hole mobility
are about 8.5 × 1021 cm−3 and µ < 30 cm2 V−1 s−1,
respectively.

3. Conclusions

Single crystals Sn1−x−y−zGexMnyGdzTe undergo
transition to ferromagnetic state with the Curie tem-
perature in the range 18–24 K. Nevertheless, the super-
paramagnetic behavior of magnetic moment testifies to
cluster nature of this DMS. Doping with gadolinium sig-
nificantly increases the magnetic moment of the crystal
at low temperatures in comparison with the Mn-based
IV–VI DMSs but does not lead to the Curie temperature
increase. Spin-glass-like behavior of investigated sam-
ples only for the highest manganese content was revealed
unlike the Ge1−x−ySnxMnyTe crystals. Anomalous Hall
effect and weak negative magnetoresistance were discov-
ered below TC due to spin dependent interaction of fer-
romagnetic clusters with holes. The temperature depen-
dence of thermoelectric power revealed below T = 170 K
a deviation from the linear dependence expected for a
semiconductor with a degenerate carrier gas in case of
the structural phase transition of ferroelectric type. In-
vestigations should be prolonged for other compositions
in order to increase Curie point.
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