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Scattering Properties of Chaotic Microwave Billiards
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Reflection and transmission measurements in microwave billiards with attached antennas allow the deter-
mination of all components of the scattering matrix including their phases. This is an extraordinary situation,
since in usual scattering experiments in nuclear or atomic physics only reduced information such as the scattering
cross-section can be obtained where the phase information is completely lost. This allows experimental tests of
theoretical predictions of scattering theory inaccessible by any other method. As an example the distribution of
reflection coefficients and of the line widths in a chaotic microwave billiard are discussed.

PACS numbers: 03.65.Nk, 05.45.Mt

1. Introduction

In the spring times of nuclear physics in the midst of
the last century there appeared a vast amount of experi-
mental results on cross-sections, partial cross-section etc.,
obtained by bombarding target nuclei with light projec-
tiles. In the interpretation of the spectra the physicists
of that time faced two problems. First there was the task
to separate the properties of the target nuclei from those
of the projectiles. Taking the solution of this problem for
granted, an even more severe one remained. Nearly noth-
ing was known at that time on the origin of the nuclear
forces. Could it be expected under such circumstances to
obtain any relevant information at all from these irregu-
larly looking spectra without any recognisable pattern?

The first of these two problems had been solved by the
invention of scattering theory [1]. The scattering ma-
trix S with its components Snm connects the amplitudes
a1, a2, . . . of the incoming “channels” with the amplitudes
b1, b2, . . . of the outgoing “channels” via

bn =
∑
m

Snmam. (1)

In the context of nuclear physics the channels denote
the incoming and outgoing particles such as protons,
neutrons, deuterons etc., together with their respective
momenta. In the case of microwave billiards to be dis-
cussed later the channels are just the attached antennas
or waveguides.

Scattering theory establishes a relation between the ex-
perimentally obtainable scattering matrix S on one hand,
and on the properties of the system under consideration
on the other hand, which may be cast in the following
form:

S = 1− iW † 1
E −H + iWW †W, (2)

where H is the Hamilton operator of the unperturbed
system, and W is a matrix containing the information
on the coupling between the system and the channels.
Truncating H to a finite rank N which is unavoidable in
any theoretical treatment, W becomes a N ×M matrix,

where M is the number of attached channels.
Equation (2) shows that the scattering matrix is di-

rectly related to an effective Green function Geff =
(E − Heff)−1, with the effective Hamiltonian Heff =
H − iWW †. The coupling to the channels enters thus
in a twofold way. First, in the nominator, it couples the
effective Green function to the channels, second, in the
denominator, it gives rise to an imaginary part of the
Hamiltonian, resulting in a broadening of the resonance
lines. Equation (2) sometimes is called the “Heidelberg
approach” since scattering theory had been developed in
mayor parts by Weidenmüller and coworkers in Heidel-
berg [2].

The first problem being solved we now meet the sec-
ond one: Nearly nothing had been known on the details
of the Hamiltonian H, as well as on the elements of the
coupling matrix W . How to proceed further in such an
unfavourable situation? Here one idea showed up to be
extremely useful, notwithstanding its obviously oversim-
plifying nature: If nothing is known on the matrix ele-
ments of H and W , just let us take them as random num-
bers, with only some global constraints, e.g. by taking the
matrix H symmetric or Hermitian for systems with and
without time-reversal symmetry, respectively, and by fix-
ing the variance of the matrix elements of H and W . For
technical reasons usually Gaussian distributed matrix el-
ements are assumed [3].

With these assumptions a number of exact expressions
for many quantities of interest can be calculated explic-
itly, such as spectral correlation functions, eigenvalue
spacings distributions etc. The method of choice to calcu-
late Gaussian averages is the supersymmetry technique.
Unfortunately, the calculations are technically demand-
ing already for comparatively simple questions, in par-
ticular for systems with time-reversal symmetry, being
the most important ones. Again one of the most dissem-
inating contributions in the field comes from Heidelberg
called the VWZ report after the initials of its authors [4].

The replacement of H by a random matrix means to
abandon any hope to learn more about nuclei from the
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spectra but some average quantities such as the mean
level spacings. Of course this is not the end of the story:
there are techniques to extract also individual system
properties, but this is not the topic of the present article.
But the loss of individual features in the spectra on the
other hand means that it might be worthwhile to look for
universal features being common to all chaotic systems.
This approach showed up to be extremely fruitful in the
past years. It allowed to apply results originally obtained
for nuclei to many other systems as well, in particular
quantum–dot systems [5] and microwave billiards [6].

The latter systems had been studied by the author
and his co-workers over many years starting with quan-
tum chaos research, but concentrating in recent years on
questions coming from scattering theory. A number of
examples will be presented in this article. Microwave
billiards have a number of advantages as compared to
nuclei: (a) typical wavelengths are of the order of mm
to cm, resulting in very convenient sizes for the used res-
onators, (b) sizes of the resonators, coupling strengths to
antennas etc. can be perfectly controlled, (c) parameter
variations, e.g. of the coupling strength of the size can be
easily achieved, and (d) last but not least, in microwave
systems the complete scattering matrix is obtainable, in-
cluding the phases. This is extraordinary, since in nuclear
physics usually only reduced information, such as scat-
tering cross-sections is available, resulting in a complete
loss of the phase information. This is why a number of
predictions of scattering theory had been tested not in
nuclei but microwave billiards.

This article is organised as follows: In Sect. 2 as an
introductory example results on the distribution of re-
flection coefficients in a billiard with absorption are pre-
sented and compared with the predictions of scattering
theory. Nearly all previous studies of this type concen-
trated on the study of such average quantities, where the
knowledge of the poles of the scattering matrix (2) is
not needed. The determination of these poles is simple
as long as the resonances are separated. In the really
interesting regime of strong overlap, however, this had
been not achieved until recently, apart from one excep-
tion from our group. Here a breakthrough appeared by
the adoption of the method of harmonic inversion to de-
termine the poles of the scattering matrix. As this tech-
nique is not yet familiar to everybody, its essentials are
explained in Sect. 3. In the last Sect. 4 the method is
applied to microwave spectra, extending the determina-
tion of the poles up to the regime where the line widths
amount to up to ten times the mean level spacings. The
presentation in the following sections is deliberately col-
loquial and omits all technical details. The reader is re-
ferred to the original works for more information.

2. Distribution of reflection coefficients

Because of the difficulty to resolve the poles of the
scattering matrix in the regime of strong overlap, most
studies, both experimentally and theoretically, concen-
trated on quantities, where an explicit knowledge of these

poles is not needed such as the distribution of reflection
and transmission coefficients, as well as various types of
spectral correlation functions [7–11], see Ref. [12] for a re-
view. As a typical example of this kind we present here
a study of the distribution of reflection coefficients as a
function of absorption [7]. Figure 1 shows the used setup.
The studied system had been a quasi-two-dimensional
resonator of the shape of a half Sinai billiard, one of
the paradigms of classical non-linear dynamics. The res-
onator had been quasi-two-dimensional, i.e., with top and
bottom plate parallel to each other and a height smaller
than half of the wave length. In such systems there is a
complete equivalence to the quantum mechanics of the
corresponding billiard system with Dirichlet boundary
conditions. In part of the measurements one of the walls
had been coated by absorbing material to increase the ab-
sorption. The microwave field had been excited by one
antenna, used also for the reflection measurement.

Fig. 1. Sketch of the used microwave billiard (a1 =
43 cm, b1 = 23.7 cm, height h1 = 7.8 mm). The half
disk (d = 12 cm) could be moved along a1 to allow for
an ensemble average. In part of the measurements one
wall was coated with an absorber (taken from Ref. [7]).

Figure 2 shows typical reflection spectra for three dif-
ferent regimes. The spectrum of Fig. 2a has been ob-
tained in the low frequency regime, where all resonances
are well resolved. This regime is well understood [13].
Here for the reflection R = S11 relation (2) reduces to

R = 1− 2iγ
∑

k

|ψk(r)|2
E − Ek + iΓk

, (3)

where γ is a coupling constant depending on the antenna
properties, Ek is the energy of the k-th eigenstate, and
Γk is the width of this state due to the antenna cou-
pling. Equation (3) is the billiard equivalent of the Breit–
Wigner formula known from nuclear physics for decades.
Since all theories have been developed for quantum-
-mechanical systems, in Eq. (3) the quantum-mechanical
expression for the reflection has been given. The cor-
responding electromagnetic expression looks slightly dif-
ferent, resulting from the different dispersion relations
ω ∼ k2 and ω ∼ k for quantum-mechanical and electro-
magnet systems, respectively (see Ref. [12] for details).

Figure 2b has been obtained for the same system, but
for higher frequencies. Since in two-dimensional systems
the density of states increases proportionally to k, the
ratio of the mean level spacings ∆ to the mean line
width Γ decreases with frequency resulting in an increas-
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Fig. 2. Typical absorption spectra for the Sinai bil-
liard shown in Fig. 1 for weak (a), intermediate (b),
and strong (c) absorption. The results for weak and in-
termediate absorption have been obtained without the
absorber at one of the walls, for the strong absorption
the absorber had been present (taken from Ref. [7]).

ing overlap of resonances with increasing frequency. In
this regime individual resonances cannot be resolved any
longer, and only chaotic fluctuations are observed. In
nuclear physics the corresponding features are the well-
-known Ericson fluctuations discovered in the sixties of
the last centuries. About 20 years later the same features
have been found in the transport through quantum-dot
structures, where they have been termed “universal con-
ductance fluctuations”. And now we see the same fluctu-
ations again in microwave billiards! This illustrates the
charm of the universal approach: The physical properties
of the three mentioned systems are completely different,
and their sizes extend over 15 orders of magnitude, but
still the theoretical treatment is the same.

These measurements had been obtained with the bil-
liard shown in Fig. 1 without the additional absorber.
To increase the absorption even more, the absorber had
been inserted. As a result only very broad, purely re-
solved structures appeared, see Fig. 2c. This limit again
is well understood [14].

Figure 3 shows the reflection distributions p(R) for the
same three regimes which had been selected in Fig. 2. At
the time, when the measurements had been performed,
theoretical results for p(R) in the presence of absorption

Fig. 3. Distribution of reflection coefficients for (a)
weak, (b) intermediate and (c) strong absorption, ob-
tained for the same regimes as in Fig. 2. The solid lines
are the experimental results, the dotted lines are the
result of a simulation (taken from Ref. [7]).

had been available only in the weak [13] and the strong
[14] absorption limit, but not in between. Therefore the
experimental distributions had been compared with the
results of random matrix simulation, using the Heidel-
berg expression (2) for the scattering matrix, and taking
Gaussian averages over all occurring matrix elements.
There had been only two free parameters namely the
coupling constant γ of the antenna and the average ab-
sorption. Both parameters had been determined directly
from the experimentally available averages of the absorp-
tion and the reflection. These parameters had been used
in the simulation leaving no adjustable parameter. Nev-
ertheless a nearly perfect agreement between experiment
and simulation is found, justifying the random matrix
treatment of the microwave billiard.

Motivated by the experiments our theoretical col-
leagues meanwhile managed to find an explicit analytical
expression for p(R) covering the whole range from weak
to strong absorption [15]. Again the agreement was per-
fect, both with the experiment and the simulations.

3. The harmonic inversion technique

For average quantities such as the distribution of re-
flection coefficients knowledge of the pole structure of
the scattering matrix is not needed. The same is true for
most previous experiments on reflection and transmis-
sion properties of chaotic microwave billiards and graphs.
There had been only one previous study performed in the
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author’s lab where the dynamics of the poles in the com-
plex plane could be followed in dependence of the opening
of an attached channel [16]. The experiments exhibited
the phenomenon of resonance trapping, i.e., the feature
that with increasing opening most poles do not separate
more and more from the real axis but eventually return
again. This had been the first and hitherto only experi-
mental observation of this, at first sight, counterintuitive
behaviour. To come to this result, a standard fit pro-
cedure was still feasible. But it was limited to regimes
where the mean line width Γ amounted to at most four
to five times the mean level spacing ∆, and is definitely
not suited as a standard tool to analyse resonances in the
regime of strong overlap.

Here the method of harmonic inversion poses an alter-
native. It has been introduced by Wall and Neuhauser
[17] and further developed by Mandelshtam and Tay-
lor [18], but it was Main who brought the codes into a
manageable form suited for the application to experimen-
tal data [19]. Since the technique is not yet sufficiently
well known, the essentials of the method are presented
here in a cursory form. The following presentation fol-
lows the paper by Wiersig and Main [20].

The harmonic inversion is capable to extract the num-
ber of resonances hidden in a measured spectrum without
any foreknowledge on its number. This is a huge advan-
tage as compared to standard fit procedures. As an input
the method needs a complex signal on the time axis be-
ing a superposition of exponentially damped oscillations

c(t) =
K∑

k=1

dk e− iωkt, ωk = Ωk − i
2
Γk. (4)

Discretising the time in finite steps for τ one gets

cn = c(nτ) =
K∑

k=1

dk (zk)n
, zk = e− iωkτ . (5)

Applying a discretised Mellin transform and summing up
the resulting geometric series one obtains

g(z) =
∞∑

n=0

cnz−n =
K∑

k=1

dk

∞∑
n=0

(zk

z

)n

=
K∑

k=1

zdk

z − zk
. (6)

Let us note that this approach assumes an extrapola-
tion of the time signal over arbitrarily long times. It can
therefore work for time signals only where there is no
doubt that the time series really can be written as a sum
over damped oscillatory terms. The latter expression can
be written as

g(z) =
PK(z)
QK(z)

, (7)

where PK(z), QK(z) are polynomials of degree K, the
number of term in the sum (6). The zk are the zeros of
QK(z), and the dk are obtained by the residuum method
as dk = PK(zk)/[zkQ′

K(zk)]. And now crucial point:
Knowledge of 2K signal points c0, . . . , c2K−1 is sufficient
to calculate the coefficients of the two polynomials,

PK(z) =
K∑

k=1

bkzk, QK(z) =
K∑

k=1

akzk − 1. (8)

First the coefficients ak of QK(z) obtained as solutions
of the linear set of equations

cn =
K∑

k=1

cn+kak, n = 0, . . . ,K − 1. (9)

Let us note that the cn obtained from the discretization
of the time signal enter in two different ways, on the left
hand side in terms of a vector, on the right hand side in
terms of a matrix. Once the ak are known, the coefficients
bk of PK(z) are obtained from

bk =
K−k∑
m=0

ak+mcm, k = 1, . . . , K. (10)

Next the zk are determined as the zeros of QK(z). One
convenient way to do this is to interpret QK(z) as the
characteristic polynomial of some matrix, the eigenvalues
of which can be obtained by standard techniques. In the
last step the dk are obtained by the residuum technique,
see above.

Since the experimental spectra have been taken on the
frequency axis, first of all they have to be converted to
the time domain by means of a Fourier transform. From
scattering theory we know that any reflection signal can
be written as

R(E) = 1−
∑

k

dk

E − Ek
, (11)

where the Ek are the (complex) zeros of Heff , see
Eq. (2), and the dk are the respective residua. Again the
quantum-mechanical description has been applied to be
in accordance with the notation of Sect. 1. After Fourier
transforming Eq. (11) we obtain the wanted time signal

R̂(t) = δ(E)−
∑

k

dk e− iωkt (12)

with ωk = Ek/~ = Ωk − iΓk.
The application of the Fourier transform assumes that

there are no other energy dependences apart from those
occurring in the poles of the scattering matrix. In real
experimental data this is not strictly true. The cou-
pling of the antennas is energy dependent, too, though
usually only slowly varying with energy. In the Fourier
transform these additional energy dependences map into
non-exponential contributions to the decay of the signal.
The harmonic inversion tries to describe these additional
terms in terms of a superposition of exponentials giving
rise to an unwanted background.

The signal (12) can now be treated by the harmonic
inversion technique. The rank K of the matrices con-
structed from the time signal is not needed for this pur-
pose. It is sufficient to take a value exceeding the number
of expected resonances. To this end the number of val-
ues ck must exceed K by a factor of two, an obvious
condition, since each resonance is characterised by two
parameters ωk, dk. In the end one faces the problem to
distinguish between real and spurious resonances. There
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Fig. 4. Real and imaginary part of a part of the spec-
trum in the regime of overlapping resonances. Ad-
ditionally the reconstructed spectrum using the reso-
nances identified by the harmonic inversion is shown in
dashed. The vertical lines indicate the positions of the
resonances and the horizontal lines the corresponding
widths at half maximum. On top of each figure the dif-
ference between the measured spectrum and the calcu-
lated one is shown. The mean level spacing ∆ is marked
by a horizontal bar (taken from Ref. [12]).

are a number of options, e.g., introducing cut-off criteria
for dk, varying the starting point of the time series, using
different windows and window functions for the Fourier
transform etc.

Figure 4 shows, how the method works [21]. The solid
lines in the upper and the lower part show real and imag-
inary part of a part of the spectrum of the Sinai resonator
in Fig. 1 in the regime of intermediate overlap. The same
data set had been used for the determination of the re-
flection distribution discussed in Sect. 2. The resonances
obtained by harmonic inversion and surviving a couple
of cut-off tests are depicted below, where the dots denote
the position of the resonance and the vertical bars their
width. The dashed line is the reconstructed signal using
the surviving resonances found in the harmonic inversion.
In the upper parts of the figures the difference between
the original and the reconstructed signal is shown illus-
trating the quality of the technique. To come to such
a good agreement, it was necessary to subtract a linear
background from the reconstructed signal such that both
original and reconstructed signal coincide at the lower
and the upper frequencies of the window displayed in
the figure. This background has its origin in the ad-
ditional frequency dependences in the antenna coupling
mentioned above.

In the present case the number of expected resonances
in the shown frequency window can be calculated from

the Weyl formula and should be 18, whereas the number
of found resonances is 16. In fact the two missing reso-
nances show up in the difference between the original and
the reconstructed spectra at 15.11 and 15.15 GHz. They
just did not survive the applied cut-off criteria. Here
we see the limitation of the method: without further in-
formation (spectral level dynamics, use of more than just
one antenna position etc.) one always will lose the one or
the other true resonance, and at the same time will mis-
interpret noise peaks as real resonances. Since this had
been the first application of the harmonic inversion to ex-
perimental data, a longer-term experience will be needed
to explore the limits of the technique in this respect.

4. Line width distributions

The possibility to analyse the poles of the scattering
matrix even for strongly overlaping resonances opens the
possibility to study questions hitherto not accessible by
the experiment [21]. As an example Fig. 5 shows the
result of the harmonic inversion to the spectrum of the
billiard shown in Fig. 1 in the intermediate regime. Only
a subset of the poles is shown in the main figure. A bet-
ter impression of what can be achieved can be obtained
from the inset where all found resonances were depicted.
The dashed line close to the real axis corresponds to the
line width expected from wall absorption due to the skin
effect. One sees that this is only a minor contribution to
the total line width. The dashed line corresponds to the
average absorption obtained if the decay of the scattering
matrix on the time axis is fitted by an exponential. The
strong scattering of the poles about this average value
shows that the assumption of just one exponential decay
is not justified, which had not been such obvious from a
mere look into the decay of the scattering matrix.

Fig. 5. Normalized widths Γ/∆ for 14.7 to 15.7 GHz.
The horizontal dashed line corresponds to the width
coming from the total absorption, whereas the dotted
line (only visible in the inset) corresponds to the con-
stant part of the absorption. The inset is an enlarge-
ment of the small width region (taken from Ref. [12]).

The most obvious quantity to look at is the distribu-
tion of line widths. Here an analytic result has been
obtained for an arbitrary number of coupled channels by
Sommers et al. [22, 23], but the formulae are “rather awk-
ward even for the simplest case” (literally cited from the
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Fig. 6. Normalized width distribution in the frequency
range 4 to 5 GHz (top) and 14.7 to 15.7 GHz (bottom).
The black histograms had been obtained from the har-
monic inversion, the light (gray) one in the upper figure
from a Lorentzian fitting procedure of the isolated reso-
nances. The dashed curves correspond to the theoretical
prediction from Eq. (14) shifted by a constant off-set to
account for absorption in the walls. The solid line in ad-
dition takes into account the fluctuations caused by ad-
ditional weakly coupled channels. The insets show the
results of a random matrix simulation using the same
values for antenna coupling etc. as in the experiment
(taken from Ref. [12]).

original work). For the one-channel case in particular one
obtains for the line width distribution

P (y) =
1
4

∂2

∂y2

∫ 1

−1

dλ(1− λ2)e2πλyF (λ, y),

y = Γ/∆. (13)
y = Γ/∆ is the line width in units of the mean level
spacings, and

F (λ, y) = (g − λ)

×
∫ ∞

g

dp1
e−πyp1

(λ− p1)2
√

(p2
1 − 1)(p1 − g)

×
∫ g

1

dp2
(p1 − p2)e−πyp2

(λ− p2)2
√

(p2
2 − 1)(g − p2)

. (14)

g is a constant describing the antenna coupling. g = 1
corresponds to an ideally coupled channel, whereas in
the limit g →∞ the coupling vanishes. In Fig. 6 the ex-
perimentally obtained line width distributions are com-
pared with theory in the regime of isolated and strongly
overlapping resonances (see Fig. 2a and c). In the afore-
mentioned case it was still possible to determine the res-
onances by standard fit procedures. The results are in
perfect agreement with those obtained by harmonic in-

version. In the strongly overlapping case any trial to
determine the resonance by a multi-line fit would have
been hopeless from the very beginning. The dashed lines
correspond to the line width distribution (14), where in
addition a constant overall line width distribution due
to wall absorption has been assumed. The overall ab-
sorption and the coupling had been determined indepen-
dently (see Sect. 2), thus there are no free parameters.
One finds a good agreement in the regime of strongly
overlapping resonances. Let us note that this agreement
is observed up to the regime where the line width exceeds
the mean level spacing by up to a factor of 10! For the
isolated resonance, however, there is obviously something
missing.

The origin of this discrepancy is easily identified: it
is the assumption of a uniform general absorption giv-
ing the same constant line width contribution to all reso-
nances. If one assumes instead that there is a small num-
ber of weakly coupled channels, 10 of them in the isolated
resonance and 20 in the strongly overlapping regime, a
nearly perfect correspondence between experiment and
theory is obtained.

5. Conclusions

In the present paper only one, though central, aspect of
the microwave experiments has been discussed, namely
the interpretation of microwave billiards in terms of a
scattering system. It has been shown that there is no
essential difference to other scattering systems such as
atoms, nuclei, or quantum dots, as long as only universal
features are concerned.

Whereas in the past only average quantities could be
studied such as the distribution of reflection coefficients,
thanks to the application of the harmonic inversion tech-
nique now the pole structure of the scattering matrix can
be resolved even in the regime of strong overlap, having
been a dream for many years. The determination of the
line width distribution means only a first step towards the
exploration of the complex plane. Many other issues of
interest are now accessible, such as eigenvalue distance
distributions in the complex plane, or the extension of
spectral level dynamics studies to the complex plane, to
mention just two issues.
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