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Doorway Mechanism in Many-Body Systems
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Among the numerous different ways to excite many-body and other complex quantum systems, mechanisms
are often found which are clearly distinguished by a simple, typically semiclassical interpretation. In nuclei,
these are the collective excitations in which all or large groups of particles move coherently. They often act as
“doorways” to other excitations of single-particle character. Examples for and the limitations of the doorway
mechanism are discussed. Recent results show that superscars in the barrier billiard serve as perfect object to
shed light on aspects of the doorway mechanism which are not directly accessible in traditional quantum systems.
To this end, two new statistical observables are employed. Some open questions are addressed.
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1. Introduction

The most beautiful feature of statistical physics is its
ability to provide a unifying understanding for at first
sight different physical phenomena. This enables a fruit-
ful transfer of ideas, insights and approaches. Here, a
recent example will be presented. In quantum many-
-body systems, the variety of possible states is so rich
that excitation modes which are somehow “distinct” are
indispensable to structure the spectral information ob-
tained in an experiment. By “distinct” we mean excita-
tions which allow for a simple, typically semiclassical, in-
terpretation. Collective excitations in which all particles
or large groups of particles move in a spatially coherent
fashion [1] are of particular interest. In the sequel, we will
discuss examples from nuclear physics. Such a dynami-
cal coherence implies that the motion of the many-body
system takes place in a low-dimensional subspace of the
full phase space. This in turn makes it possible to de-
scribe these excitations by models comprising only very
few degrees of freedom. The successful identification of
the corresponding states in the spectra yields fundamen-
tal information about the dynamics of the system as a
whole.

It is, however, highly unlikely that all properties of
the collective excitation are fully caught by the low-
-dimensional model. Put differently, the states resulting
from this simplifying model are hardly ever eigenstates
of the true many-body Hamiltonian. Of course, if the
model is meaningful, they have to be a good approx-
imation for true eigenstates. Hence, the states of the
simplifying model have a non-vanishing overlap with the
true eigenstates of the system. This leads to the concept
of a doorway state: one models the true Hamiltonian of
the system as consisting of, first, the simplifying model
for the collective states, second, a background of other

non-collective states and, third, the coupling between
these two classes of states. The non-collective states have
single-particle character. Their detailed features are not
important to understand the collective motion. Often,
not always, one can assume that their number is very
large, and one models them statistically. The collective
states act via the coupling as “doorways” to the back-
ground of the non-collective states [1–3]. Thus, the door-
ways spread over the background.

Everything which has been said so far is not only valid
for collective excitations, it can as well apply to states
which are distinct for another reason. A good exam-
ple is anticrossing spectroscopy in molecular physics, see
Ref. [4]. As shown in Fig. 1, a singlet state |s〉 is excited
by a laser from the singlet ground state |s0〉. This state
is not really an eigenstate of the Hamiltonian, because
there is a small interaction Vµ with the triplet state |tµ〉
which becomes important when the two states are en-
ergetically close. The whole manifold of triplet states
can be shifted in energy by a strong magnetic field while
the singlet states do not change their energetic position.
Hence, whenever a triplet state is close to |s〉, the fluo-
rescence yield from |s〉 back to |s0〉 is lowered due to the
coupling Vµ. The singlet state acts as a doorway to all
these triplet states, rendering precise spectroscopy pos-
sible. Further examples for the doorway mechanism can
be found in metal clusters, see Refs. [5, 6].

Recently, a full-fledged investigation of the doorway
mechanism was presented in Ref. [7]. Certain distinct
states, referred to as superscars, in a pseudointegrable
microwave billiard were studied by means of new observ-
ables which at present cannot be extracted from experi-
mental data in many-body systems. The purpose of this
contribution is to discuss these findings and to put them
into a proper perspective by relating them to collective
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Fig. 1. Anticrossing spectroscopy in molecular physics
as an example for the doorway mechanism. Taken from
Ref. [4].

excitations in many-body systems. In the course of doing
so, various open questions will be addressed.

The paper is organized as follows. In Sect. 2, the
doorway mechanism and its limitations in nuclei are dis-
cussed. The microwave experiment is briefly sketched
in Sect. 3. In Sect. 4, a statistical model is described.
The distribution of the maximum coupling coefficient and
comments on its analytical calculation are presented in
Sects. 5 and 6, respectively. In Sect. 7, directed spatial
correlators are studied. Conclusions are given in Sect. 8.

2. Collective excitations in nuclei

In the cross-sections of electric dipole radiation, a very
large peak is seen at higher excitation energies Ex. As
Fig. 2 schematically displays, this striking resonance is
much larger than all other electric dipole resonances. It
is thus referred to as giant dipole resonance (GDR) [1].
It is found in all nuclei, its excitation energy roughly
scales as EGDR ∼ A−1/3 where A is the mass number,
that is, the number of nucleons. The giant dipole reso-

Fig. 2. Schematic drawing of the cross-section for elec-
tric dipole radiation in nuclear physics. The big peak to
the right is the giant dipole resonance, the small peaks
to the left are pygmy resonances.

nance can be interpreted as a linear oscillatory motion
of all protons and all neutrons against each others, as
shown in Fig. 3. A simple model is thus obtained by
ignoring the relative motion of protons to one another
and neutrons to one another. They are viewed as con-
fined in two spheres, one for the protons, one for the
neutrons, within which the particles are “frozen”, no rel-
ative motion occurs. Hence, the effective motion is as

Fig. 3. Linear oscillatory motion of all protons and all
neutrons against each others in the giant dipole reso-
nance.

collective as possible, it is a one-dimensional linear oscil-
lation of these two spheres against each others. The state
constructed in this way, however, is almost certainly no
eigenstate of the true many-body Hamiltonian. A true
eigenstate will also contain relative motion of the parti-
cles within each sphere. The closer the excitation energy
to the peak energy, the less relevant is this single par-
ticle motion. The further away from the peak energy,
the more important is it. The resulting resonance is very
broad. The level density is typically so high that the in-
dividual nuclear resonances forming this resonance can-
not be resolved. The width of the GDR, the spreading
width Γ , is thus the only characteristic information. It is
a measure for the coupling strength between the simple
model for the collective state at energy EGDR to the sur-
rounding background states which are of single-particle
type. The true states are then constructed as superpo-
sitions of the simple collective state and the background
of the single-particle states. As the individual nuclear
resonances cannot be resolved anyway, it is reasonable to
average over the background states. The simplest observ-
able thereby calculated is the Wigner strength function,
that is, the local density of states [1, 2, 8] around the
peak position EGDR,

%GDR(Ex) =
1
π

Γ/2
(Ex − EGDR)2 + Γ 2/4

. (1)

This Lorentzian shape, also referred to as Breit–Wigner
shape, is robust, it is found under very general condi-
tions [1].

From the viewpoint of quantum chaos, it is highly in-
teresting to know whether the level statistics under the
GDR is chaotic or not. Obviously, there is no way to
address this issue with experimental data due to the lack
of resolution. One should emphasize that the Wigner
strength function (1) and related measured observables
cannot help here, because they are almost insensitive to
the level statistics of the background states [1]. But still:
there is good reason to assume that the levels under
the GDR are chaotic, since the level statistics at these
higher excitation energies has been found to be chaotic
in the cases where it is experimentally accessible, espe-
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cially in the compound nuclear resonances, see Ref. [8]
and references therein. Hence, the implicit assumption
emerged that the doorway mechanism always comes with
chaotic statistics of the background states. The anal-
ysis [9] of the magnetic analog of the GDR came as a
considerable, entirely unexpected surprise: At low ex-
citation energies, deformed nuclei can move just like a
pair of scissors. The protons and neutrons in this scis-
sors mode excitation (SME) can be viewed as confined
in two ellipsoids which oscillate against each others as
displayed in Fig. 4. The corresponding excitation en-
ergy scales as ESME ∼ δA−1/3, where δ measures the
deformation. Again, in the simple model, the protons
and neutrons are “frozen”, resulting in an effectively one-
-dimensional motion. In the doorway picture one would
then expect these states to be coupled to a background
of single-particle excitations. Importantly, about ten or
so states are found and clearly resolved in the experi-
ments. They can be attributed to the SME by means
of experimental information. Collecting data from dif-
ferent nuclei in the rare earth region, the level statistics
was analyzed [9] and found to be regular. This is inher-
ently incompatible with a doorway interpretation, since a
coupling between doorway and background states is tan-
tamount to the existence of correlations between the true
eigenstates. A fully convincing explanation of these find-
ings is still lacking. One is led to the conclusion that all
the states belonging to the scissors mode are collective in
their own right. An attempt to picture that is made in
Fig. 4. Twelve nucleons, say, can be spatially organized
in such a way that the enveloping ellipsoids are different.
The moments of inertia do not agree, implying that the
excitation energies are different as well. Hence, each SME
state belongs to a slightly different ellipsoid. In contrast
to the GDR the nucleons inside are “frozen”, because the
available energy is so low.

Fig. 4. (left) Rotational oscillatory motion of all pro-
tons and all neutrons against each others in the scissors
mode. (right) Two ellipses filled with twelve particles
without relative motion.

Such an interpretation is corroborated by the exper-
imental and theoretical study on the pygmy resonances
(PR) presented in Ref. [10]. The weakly excited PR are
found below the GDR as schematically shown in Fig. 2.
These excitations may be viewed as a shaking motion of

a rigid inner region in the nucleus containing an equal
number of protons and neutrons against the excess neu-
trons in the outer region as displayed in Fig. 5. The

Fig. 5. Pygmy resonances pictured as linear shaking
motion of protons and neutrons in the inner region
against the excess neutrons in the outer region.

Coulomb interaction only affects the protons, implying
that the number of neutrons which the nucleus confines
is larger than the number of protons [1]. This neutron
excess is the larger the larger the mass number A. The
shaking motion comprises regular and chaotic features.
In view of the discussion above, one would expect chaotic
level statistics with remnants of regularity. Indeed, this
is confirmed by the analysis [10]. The complexity of the
experimental and the theoretical situation, however, is
obstructive of a high statistical significance.

The purpose of this survey over certain aspects of col-
lective motion in nuclei was to show that, first, the door-
way picture is a most useful concept in understanding
complex systems and that, second, various important
questions are still unanswered. In particular, the follow-
ing topics ought to be addressed:

• Interplay between level statistics and doorway
mechanism.

• Structure of wave functions.

• Statistics of observables deriving from the wave
functions.

Nuclear experiments are very difficult and often ham-
pered by resolution problems. Wave functions can a pri-
ori not directly be measured in traditional quantum sys-
tems. The superscars in the barrier billiard, however,
provide an ideal object for the study of these issues. This
is shown in the sequel. Some of these insights might in
turn be useful for many-body physics as well.

3. Superscars in the barrier billiard

Sufficiently flat microwave resonators simulate quan-
tum mechanics in two dimensions [11]. In Ref. [12],
the eigenstates and the wave functions of a rectangular
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microwave billiard with a thin barrier inside were mea-
sured, see Fig. 6. The billiard is known to be pseudoin-
tegrable [13]. Remarkable states called “superscars”, pre-
dicted in Ref. [13], were found in addition to many other
states of different type [12]. As seen in Fig. 6, the super-
scars relate to particular classical periodic orbit, more
precisely, to families of neutrally stable classical periodic
orbits. Ordinary scars [14] are localized around a single
unstable periodic orbit. The superscars are thus differ-
ent, they do not disappear at large quantum numbers. As
confirmed in the experiment, they are embedded into a
large number of nonscarred wave functions. Importantly,
these latter states are of a very different type. As will
be discussed in detail, the doorway mechanism applies
to these “distinct” superscar states. They act as door-
ways to the background of the nonscarred wave functions.
Four examples of measured superscars are displayed in
Fig. 6. The superscars form a family which is confined

Fig. 6. Examples for measured superscars in the bar-
rier billiard. The concentration along the classical peri-
odic orbits (dashed lines) is clearly visible. Four differ-
ent families are shown, top row: BB and V, bottom row:
D and W. The gray level indicates the value of the wave
function (black: highest positive, white: most negative
value). Taken from Ref. [7].

to an infinitely long periodic orbit channel (POC) [12].
The amplitude of the scarred wave function tends to zero
on the POC boundary. The superscarred wave function
may be approximated by a constructed superscar state,
defined as an eigenfunction Ψ (F)

m,n(r) in the infinitely long
POC [12, 13]. Here F ∈ {BB, V,D, W} labels the super-
scar families. In the experiment the four families: hori-
zontal bouncing ball BB, inverted V superscars, diamond
D and W were measured, see Fig. 6. The indices (m,n)
are the numbers of wave maxima along and perpendic-
ular to the POC. Each of the states Ψ (F)

m,n(r) acts as a
doorway to the nonscarred states in the barrier billiard.
A measured, that is, true eigenstate Ψf̃ (r) at the prop-
erly unfolded [8] frequency f̃ has the overlap

cm,n = 〈Ψ (F)
m,n|Ψf̃ 〉 (2)

with the constructed superscars [12, 13]. The distribu-
tion of these overlaps nicely follows a Breit–Wigner shape
[7, 12]. Hence, the superscar strength spreads into the

neighboring nonscarred background states. This is an
essential prerequisite for a doorway interpretation. In
the sequel, a further and much more detailed analysis of
the experimental data will be discussed using new ob-
servables defined in Ref. [7], namely the distribution of
the maximal coupling coefficient and directed spatial cor-
relators.

4. Statistical model

A brief sketch of the statistical model to describe the
doorway mechanism [1, 7, 8] is now called for. Eventu-
ally, the model employs random matrices, for a review
see Ref. [8]. The total Hamiltonian

Ĥ = Ĥs + Ĥb + V̂ (3)
consists of three parts: Ĥs and Ĥb are the Hamiltonians
for doorway and background states, respectively, while
the interaction V̂ couples these two classes of states.
The stationary Schrödinger equations for the uncoupled
Hamiltonians are

Ĥs|s〉 = es|s〉 and Ĥb|b〉 = eb|b〉. (4)
It is assumed that the interaction couples states from dif-
ferent classes only,

〈s|V̂ |s′〉 = 〈b|V̂ |b′〉 = 0 and 〈b|V̂ |s〉 = vbs (5)
for any s, s′, b, b′. The constructed superscars, Ψ (F)

m,n(r)
for a given family F but with different (m, n) are the
doorway states |s〉. Obviously, a doorway state is not an
eigenstate of the Hamiltonian Ĥ. It is further assumed
that the interaction matrix elements, vbs = vsb, are Gaus-
sian distributed random variables centered around zero
with variance v2. It has to be stressed that the param-
eter governing the physics is v/d, where d is the mean
level spacing of the background states [1]. This is an
often encountered feature of statistical models based on
random matrices, see Ref. [8]. In the present case, only
a few states carry superscar strength with given values
of (m, n). Superscar states with different (m,n) may be
viewed as not mixing. Thus, it suffices to consider one
single superscar state |s〉, coupled to N background states
|b〉, where N is large.

The Schrödinger equation for the full Hamiltonian,
Ĥ|n〉 = En|n〉 (6)

can be solved yielding the exact but implicit equation

En = es −
N∑

b=1

v2
bs

eb − En
. (7)

The “true” eigenstates are found to be

|n〉 = cs(n)

(
|s〉 −

N∑

b=1

vbs

eb − En
|b〉

)
. (8)

Because of normalization, one arrives at the expression

cs(n) =

[
1 +

N∑

b=1

v2
bs

(eb − En)2

]−1/2

(9)

for the superscar coupling coefficients to each eigenstate.
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A random matrix simulation for the coupling coeffi-
cients cs(n) is carried out [7] including N = 294 back-
ground states. This was the number of nonscarred states
found in the experiment. From general considerations,
one can imagine three different scenarios for the statis-
tics of the background states. As shown in Fig. 7, the

Fig. 7. (left) Different spectral correlations, from top
to bottom: no correlations (Poisson), correlations be-
tween neighboring levels (semi-Poisson), correlations be-
tween all levels (Wigner–Dyson). (right) Nearest neigh-
bor spacing distributions P (s) in this order as dotted,
dashed and solid lines, respectively.

statistics is either regular, that is, Poisson if the lev-
els are uncorrelated, or pseudointegrable, that is, semi–
Poisson, or chaotic, that is, Wigner–Dyson. The latter
two cases which apply to correlated levels are distin-
guished by the range of the correlations. Semi-Poisson
statistics is found if only neighboring levels interact, and
Wigner–Dyson statistics results if all levels are correlated
with each other. The barrier billiard is pseudointegrable,
and the spacings between the levels are semi-Poisson dis-
tributed [15]. Thus a semi-Poisson ensemble of N + 1
states is generated [7]. The doorway state is chosen as the
middle state, it interacts with the surrounding N states.
For each realization, energies and wave functions are nu-
merically calculated, and the overlap between the super-
scar and the surrounding states is calculated. From these
simulations, v/d is extracted for each superscar family.
The spreading width is then given by

Γ = 2π
v2

d
or equivalently

Γ
d

= 2π
(v

d

)2

. (10)

These relations hold under general circumstances [1, 8].

5. Distribution of the maximum coupling
coefficients

The superscar strength c2
s(n) spreads over the differ-

ent eigenstates |n〉 in the form of a Breit–Wigner dis-
tribution (1) with spreading width Γ given by Eq. (10).
In the barrier billiard, the spreading is over a few states
only [12] which means that v/d is smaller than unity.
Hence the Breit–Wigner distribution and the spreading
width themselves are not well-suited statistical observ-
ables.

As a much better measure the maximum coupling
coefficients over all states,

cmax = max(|cm,n|) (11)
for a given superscar with the overlaps cm,n defined in
Eq. (2) are introduced [7]. Importantly, it can be in-
ferred from the experiment. Only a rather small num-
ber of states carry strength from the doorway state, that
is, from the constructed superscar. The peak of the fit-
ted Breit–Wigner distribution thus tends to deviate from
the measured largest superscar strength. Put differently,
the discretely measured state is not found exactly at
the peak position. One may, however, directly compare
the maximum measured value to the corresponding value
max(cs(n)) obtained from the numerical simulations us-
ing Eq. (9). It is convenient to consider the squares. Of
course, higher moments can be studied as well. It is even
possible to study the full distribution of these maximum
coupling coefficients for a superscar family F. In Ref. [16],
the first two moments of the c2

max distribution were in-
vestigated, the underlying assumptions, however, are not
valid in the present context. It is a most welcome feature
that the shape of the c2

max distribution strongly depends
on the interaction strength v/d. It is also found to be
a particularly sensitive measure for small values of v/d,
that is, of the order one or smaller.

In Fig. 8 distributions of measured c2
max are displayed

for each superscar family F together with the best fit
curves of the random matrix model. The fits yield the

Fig. 8. (left) c2
max distributions obtained from the ex-

periment (histogram), compared to the fit of the random
matrix model predictions (solid line). (right) Normal-
ized distributions of coupling coefficients spread over
all states on a logarithmic scale. Experimental distri-
butions (dots) are compared with the random matrix
model predictions. Taken from Ref. [7].



746 T. Guhr

following values for the interaction strength: for the BB
superscar v/d = 0.45, for the V superscar v/d = 0.35,
for the D superscar v/d = 0.3, and for the W superscar
v/d = 0.55. The interaction strengths are small and thus
the Breit–Wigner shape for the doorway strength func-
tion is compatible with earlier findings [17]. The V, D,
W superscar families comprise 16, 25 and 22 measured
states, respectively, while the BB superscar family con-
tains only 9. The fit in this latter case has thus higher
uncertainty. The averaged measured and calculated c2

max

values are listed in the Table and discussed in Sect. 8.
It is instructive to also look at the distribution of the

coupling coefficients over all eigenstates [7]. The strength
of each constructed superscar is measured and calculated
over all 294 states. The major part of the strength is
concentrated in a few states only. Figure 8 shows mea-
sured distributions compared to random matrix simula-
tions for different interaction strengths v/d resulting from
the fit to the c2

max distributions. Obviously, the model re-
produces the experimental distributions for all superscar
families well except in the case of the BB superscar family
because of the small number of superscars. Nevertheless,
one also sees that the distribution of the maximum cou-
pling coefficients is the superior observable.

TABLE
Experimental results with standard errors of the
mean versus results from the random matrix model
(RMT) and directed correlators (Corr) for averaged
c2
max values and spreading width Γ .

F
〈c2

max〉 Γ

Exp RMT Corr Exp RMT
BB 0.58± 0.05 0.58 0.81 0.9± 0.1 1.3
V 0.63± 0.05 0.68 0.69 0.8± 0.1 0.8
D 0.74± 0.03 0.72 0.69 0.9± 0.1 0.6
W 0.54± 0.03 0.51 0.49 1.0± 0.1 1.9

6. Remarks on the analytical calculation

Only a few general remarks will be made here, because
there is a surprising connection to a large number of ran-
dom matrix models. To analytically calculate the distri-
bution of the maximum overlaps max(cs(n)), one has to
average over the interaction matrix elements and over the
Hamiltonian modeling the background states. Denoting
this average by square brackets, the seeked distribution is

pmax(c) = 〈δ(c−max(cs(n)))〉. (12)
It is closely related to the distribution of the overlap be-
tween the evolved doorway state and the unperturbed
doorway state |0〉, say,

p0(c) = 〈δ(c− |cs(0)|)〉. (13)
Hence, for not too strong an interaction we should have

pmax(c) ≈ p0(c). (14)
This approximation is certainly good as long as the

mean interaction strength is an order of magnitude
smaller than the mean level density of the background
states. The numerical simulations strongly corroborate
this statement. Hence, it suffices to focus on p0(c), which
can be treated analytically. The calculations and the re-
sults will be given and discussed elsewhere [18], here only
the surprising connection already announced above is ad-
dressed.

Let us consider the chaotic case and unitary symme-
try. Using supersymmetric techniques, the calculation of
p0(c) for finite level number N is found to be equivalent
to the evaluation of an integral over two ordinary 2 × 2
Hermitean matrices σ and τ ,∫

d[σ] exp
(−trσ2

) ∫
d[τ ] exp

(−trτ2
)

×detN−1
[
σ + g(v2)τ

]
det τ, (15)

where the function g(v2) contains all information about
the interaction strength v.

Two-matrix models of related form appear remarkably
often when a random matrix model is mapped onto a
model in a dual matrix space by means of a Hubbard–
Stratonovich transformation [8]. One is tempted to spec-
ulate that there is a deeper reason for this frequent oc-
currence which is not yet understood.

7. Directed spatial correlators

In traditional quantum systems, the wave functions as
such are not experimentally accessible. One can only
measure derived quantities such as transition matrix el-
ements. In microwave billiards, however, wave functions
can be measured. In the barrier billiard, a large num-
ber was obtained [12], which allows one to analyze their
statistical properties. As a new observable, directed spa-
tial correlations of the wave functions were introduced in
Ref. [7]. Berry [19] considered the correlator

C(kr) =
〈ψk(R− r/2)ψ∗k(R + r/2)〉

〈|ψk(R)|2〉 (16)

of the wave functions ψk(r). The average is performed
isotropically over all vectors R and, for fixed moduli of
wave vector k and r, also over all directions of the vec-
tor r. In the barrier billiard, all wave functions are real,
complex conjugation is not needed in Eq. (16). Berry
argued that the spatial correlations of a wave function in
an ergodic system should coincide with those generated
by superimposing plane waves. In two dimensions, the
universal prediction C(kr) = J0(kr) follows, if possible
boundary effects are ignored. Here J0 is the Bessel func-
tion of order zero. This behavior was confirmed in a large
number of systems [8, 11, 20, 21].

However, the superscars are certainly non-ergodic.
Hence, especially tailored observables, the directed cor-
relators, were defined in Ref. [7]. Instead of averaging
isotropically as for C(kr), one averages either only across
or only along the channel in which the superscar exists,
similar to Ref. [22]. The resulting correlators are C⊥(kr)
and C ||(kr), respectively. In the top row of Fig. 9 the
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Fig. 9. Wave function correlators, the J0(kr) predic-
tion is always given as dashed line. Top row: correla-
tors of the constructed V superscar state as solid lines:
the isotropic C(kr) as well as the directed C⊥(kr) and
C||(kr). Middle row: the same observables are depicted
as solid lines for the averages over all experimental wave
functions in the barrier billiard. Bottom row: the corre-
lators averaged over all observed V superscars are shown
as solid lines and the correlators resulting from Eq. (17)
with c2

max = 0.69 are shown as filled circles. Taken from
Ref. [7].

three correlators of a constructed V superscar Ψ (V)
m,n(r)

are displayed. The isotropic correlator C(kr) agrees with
the J0(kr) prediction up to a certain scale, but the di-
rected correlators strongly deviate from it. The results
for C⊥(kr) and C ||(kr) show that the constructed super-
scar fills the channel and moves through it as a sine wave.
This is already seen in Fig. 6. The information about
the form of the waves, however, is washed out when av-
eraging over all wave functions in the billiard. As the
middle row of Fig. 9 shows, each of the three correla-
tors obtained for all measured wave functions coincides
with the J0(kr) prediction for chaotic systems. Hence,
one may use Berry’s random wave approach even though
our billiard system is pseudointegrable. Importantly only
the two-point correlations are used [7] up to kr = 8. At
larger scales, deviations due to pseudointegrability would
manifest themselves.

These observations yield information about the super-
scar coupling coefficients. Correlators averaged over all
experimentally observed V superscars are displayed in
the bottom row of Fig. 9. They are similar to, but slightly
different from those for the constructed V superscars in
the top row. The difference is due to the leaking of the
superscar out of the channel or, in the language of the
doorway description, due to the coupling of the back-
ground states to the superscar. This makes it possible [7]
to model the measured superscars Ψ (F)

f̃
(r) for family F as

a linear combination of a constructed superscar Ψ (F)
m,n(r),

which only contributes in the channel, and a state χ̃k(r)
which is ergodically distributed everywhere in the bil-
liard. Hence one has

Ψ (F)

f̃
(r) = cmaxΨ (F)

m,n(r) +
√

1− c2
maxχ̃k(r). (17)

This ansatz takes up the random matrix model above
and extends it by also modeling the spatial depen-
dence. The states describing the background should,
first, have J0(kr) correlations and, second, be orthogonal
to Ψ (F)

m,n(r). These requirements can be met by choosing
the “scarless” plane waves

χ̃k(r) =
χk(r)− 〈Ψ (F)

m,n|χk〉Ψ (F)
m,n(r)√

1− 〈Ψ (F)
m,n|χk〉2

(18)

with standard plane waves χk(r). The superscar contri-
bution in the plane waves is small, but it is not negligible;
the distribution of the overlaps 〈Ψ (F)

m,n|χk〉 has a standard
deviation of 0.13. It was checked [7] that the correlator of
the χ̃k(r) follows the J0(kr) prediction very closely. The
three correlators for the model (17) were worked out.
They depend on cmax which is, just as in the random
matrix model above, the maximum coupling coefficient
to the superscar doorway. Fits to the measured super-
scar families yield the coupling coefficients cmax. The
fits for the V superscar are shown in Fig. 9. The result-
ing 〈c2

max〉 values are listed in the Table and discussed in
Sect. 8.

8. Conclusions

The results of the data analysis are compiled in the
Table. The distribution of the maximum coupling co-
efficient and the directed correlators yield results which
agree well. This strengthens the line of reasoning fol-
lowed above. For comparison, the resulting Γ values are
also given in the Table. Obviously, the new observables
are more appropriate which is born out in the large stan-
dard deviation of the Γ distribution which is, for example
for the W superscar family, 0.8. The doorway interpreta-
tion yields an in-depth understanding of the experimental
findings. Both new observables considerably improve the
insight into the statistical features of the doorway mech-
anism. It is important and encouraging that the two
analyses agree.

It would be a major effort to carry out such a study
for data obtained from realistic nuclear structure calcu-
lations. Nevertheless, even though an experimental anal-
ysis of these issues is out of question for nuclei, such a
study of nuclear structure calculations would be highly
rewarding. It would yield a much improved understand-
ing of how the doorway mechanism emerges from the dy-
namics of the many-body system. In particular, the most
important result would be an understanding of how the
doorway mechanism ceases to work when approaching
the region near the ground state with low level density
— as is the case for the scissors mode. This in turn would
shed new light on aspects of collective motion which are
at present only poorly understood.
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