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Time–frequency analysis is important to identify the localized information of a non-stationary signal in the
time and frequency domains simultaneously. There are few different time–frequency analysis methods available
with their own specialty and suitability. In quantum mechanics Husimi function of any quantum mechanical
state arises naturally whenever the simultaneous measurement of both coordinate and momentum is performed
on this state with maximal accuracy allowed by the Heisenberg uncertainty relations. The Husimi function
is a probability distribution for the statistics of simultaneous unsharp measurement of both coordinate and
momentum. In general, like the Wigner function, the Husimi function can be defined in the space of any pair
of conjugate variables. In particular, in the studies of signal processing, this space is the time–frequency space.
In the present work we consider the Husimi function in this space, and apply it to analyse the multicomponent
signals. The time–frequency representations of the simulated signals by using the Husimi distribution clearly show
the frequency features along the time axis. The results are encouraging and indicate that, like in corresponding
analogous problems in quantum mechanics, the Husimi distribution approach in the time–frequency analysis for
non-stationary optical signals may provide some insights which are not so easily obtained in other, more spread
approaches.

PACS numbers: 43.60.Hj

1. Introduction

Many natural signals are non-stationary, i.e., their fre-
quency components evolve over time. For those sig-
nals, the popularly used Fourier transform is not ad-
equate to reveal the frequency content which is local-
ized in time, e.g., the high-frequency bursts. The time–
frequency analysis (TFA) decomposes a time-domain sig-
nal into a time and frequency two-dimensional space in
which the localized information can be presented. The
spectrogram obtained by the time–frequency analysis is
generally more desirable than the spectrum obtained by
the Fourier transform.

A few time–frequency analysis approaches have been
developed, namely the short time Fourier transform
(STFT), the Wigner–Ville distribution (WVD), the
wavelet transform, etc. In the STFT, the signal is iso-
lated in a “sliding window”, then the fast Fourier trans-
form (FFT) analysis is performed to estimate the “local”
frequency content. The Wigner–Ville distribution was
first defined by Wigner in the context of quantum me-
chanics [1], and later independently introduced by Ville
for signal processing and spectral analysis [2]. Though
the Wigner–Ville distribution gives the high resolution
in the time–frequency domain, it is not used widely for
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practical applications due to the interaction between dif-
ferent signal components, the so-called “cross term” [3].
The wavelet transforms, unlike the Fourier transforms
which use sines and cosines, use the basis functions of
limited duration to decompose a signal [4]. Wavelets are
well-suited for approximating data with sharp discontinu-
ities. However, the wavelet transform also suffers a few
drawbacks, e.g., it does not provide the shift-invariant
property, and sometimes to choose appropriate wavelet
could be problematic while processing practical signals
and custom designed wavelets are required [5].

In an analogous way as the Wigner function, the
Husimi function also can be defined for other pairs of con-
jugate variables, such as time and frequency. There are
important elements of formal mathematical correspon-
dence between quantum mechanics and signal analysis.
Historically, research work on joint time–frequency dis-
tributions has often been inspired and guided by cor-
responding quantum mechanical approaches, in spite of
essential physical differences of both fields. By this his-
torical analogy, it is worth to investigate to which extent
the Husimi function in this new signal analysis context,
and new time frequency space, inherits its most essen-
tial feature from quantum mechanics and ordinary (q, p)
phase space. It is well known that the knowledge of the
exact (sharp) quantum mechanical probability distribu-
tions both for coordinate and momentum does not sup-
ply enough information to determine, in a unique way, a
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quantum state which has such probability distributions
of coordinate and momentum. On the other hand, the
essential feature of the Husimi function, which can be in-
terpreted as the probability distribution obtained from si-
multaneous optimal unsharp measurement of coordinate
and momentum, which are canonically conjugated vari-
ables, is that it contains the complete information about
the corresponding quantum state. Namely, by inverting
the Husimi function, this quantum mechanical state can
be completely determined in the unique way. In what fol-
lows, we investigate the properties of the Husimi function
on several concrete characteristic examples.

2. Time–frequency Husimi distribution function
Wigner and Husimi functions in signal

processing

Both the Wigner and Husimi functions are the phase
space quasidistributions in quantum mechanics. These
functions provide a two-dimensional picture of a one-
-dimensional wave function, and can be compared di-
rectly with classical phase space distributions [6]. Re-
cently, they have been used in the study of quantum in-
formation, a new research field in which quantum me-
chanics is used to process and manipulate information
[7–9].

In quantum mechanics, coordinate and momentum are
conjugate variables. In signal analysis, time and fre-
quency are corresponding conjugate variables. Apart
from the absence of quantum mechanical Planck con-
stant, definitions and relations of Wigner and Husimi
functions follow the same way as in quantum mechan-
ical case. So the Wigner function of a function f , say, is
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1
π
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the above Gaussian becomes the time–frequency Husimi
distribution (HD) function
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in full analogy with quantum mechanical case, and where
now κ = 1

2σ2
t

= 2σ2
$. The values of σ$ and σt are the

applications dependent on the HD where they balance
between the resolutions in frequency and time domains.

3. Results and discussion

In this section, we investigate the performance of the
HD in the analysis of multicomponent non-stationary
signals.

3.1. Analysis of a Gaussian pulse

We analyse the HD of a Gaussian pulse signal shifted
in frequency spectrum by f0 = 5× 1014 Hz

x(t) = A exp
(
− (t− t0)2

2σ2

)
sin(ω0t), (2)

where ω0 = 2πf0 is the angular frequency.

Fig. 1. Husimi distribution of shifted Gaussian pulse
(2) with A = 1, t0 = 1 s, σ = 0.3 s: (a) 3D view, (b) xy
view, (c) xz view, (d) yz view.

From Fig. 1 we can see that the HD of the Gausian
pulse in the time domain given by (2) becomes the Gaus-
sian pulse in the frequency domain centered about f0 as
expected (Fig. 1c).

3.2. Analysis of sinusoidal pulses shifted in time

We analyse the HD of a multicomponent signal given
by

x(t) = p

(
t

tp1

)
sin(ω1t) + p

(
t− tdelay

tp2

)
sin(ω2t)

+ 1.2p

(
t
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)
sin(ω3t) + 1.2p

(
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tp4

)
sin(ω4t),(3)

where p denotes the pulse function given by

p(x) =

{
1, 0 < x < 1,

0 otherwise,

the values of used time constants are tp1 = tp3 = 2 s,
tp2 = tp4 = 1 s, tdelay = 1 s and ωi = 2πfi are angular
frequencies.

We can see from Fig. 2 that the components of higher
amplitude in the time domain correspond to higher “hills”
in the HD. It is also noticeable that components that
begin later in time are translated along the time axis in
the HD plot. The peaks along the frequency axis are
centred around the frequencies of the signal, but they
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have certain width that can be adjusted using different
values of σt. By increasing σt we get less precise HD
representation of the signal along the time axis but we
get sharper spikes along the frequency axis and vice versa.
Particular choice of σt depends on application.

Fig. 2. The HD of a multicomponent signal given
by (4) with f1 = 50 Hz, f2 = 200 Hz, f3 = 250 Hz,
f4 = 300 Hz.

4. Conclusions

In this paper a time–frequency analysis was performed,
which was based on a function, Husimi distribution, pop-
ularly used in quantum physics. HD provides a good
time–frequency representation by adjusting the shape of
its kernel, through the controlling parameter σt, to opti-
mally pass auto-components and move cross-components,
regardless of their location and orientation in the time–
frequency plane. It is shown that the HD convenes most

of the desirable properties with high time frequency res-
olution.

Simulation results presented in this paper indicate that
the used distribution, HD, is a promising approach in the
time–frequency analysis. Also, this study, in a way, re-
veals the potentials of the HD distribution in multicom-
ponent signal analysis.
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