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Calculation of the Impulse Response
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The analytical solution of the time-dependent power flow equation is employed to calculate impulse
response in a step-index plastic optical fiber. Results are given at different fiber lengths and are shown
to agree with those reported in the literature. Mode-dependent attenuation, modal dispersion and mode cou-
pling in plastic optical fibers are known to affect fiber-optic power delivery, data transmission, and sensing systems.
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1. Introduction

Transmission properties of step-index (SI) multimode
optical fibers depend strongly upon mode-dependent at-
tenuation, modal dispersion and the rate of mode cou-
pling (power transfer from lower to higher order modes)
caused by intrinsic perturbation effects (primarily due
to microscopic bends, irregularity of the core-cladding
boundary and refractive index distribution fluctuations).
Different simulation models are usually required for these
three important effects in SI optical fibers. The ray trac-
ing model calculates the trajectory for each ray through
the fiber. It enables the calculation of the impulse re-
sponse including the process of mode-dependent attenu-
ation and modal dispersion. This model is computation-
ally intensive as a large number of ray-trajectories must
be generated. In contrast, using the time-independent
power flow equation [1], mode-dependent attenuation
and mode coupling can be modeled effectively to re-
veal their influence on transmission characteristics of the
fiber. Furthermore, using the time-dependent power flow
equation, one can model all three major fiber effects [2].
Using the time-dependent power flow equation, we re-
port in this work on the impulse response in SI plastic
optical fiber (POF) that has been investigated by Breyer
et al. [3].

2. Time-dependent power flow equation

We use Gloge’s time-dependent power flow equation to
describe the evolution of the modal power distribution
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along the axis of the SI POF (as coordinate z). Individ-
ual modes are characterized by their inner propagation
angle θ measured with respect to fiber axis. Gloge’s time-
-dependent power flow equation can be written as [2]:
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where t is time, P (θ, z, t) is power distribution over an-
gle, space and time, α(θ) is mode-dependent attenuation,
∂t/∂z is mode delay per unit length and D(θ) is mode-
-dependent coupling coefficient. Mode-dependent atten-
uation can be written in the form α(θ) = α0 +Aθ2 + . . . ,
where α0 describes the loss common to all modes. It can
be accounted for later by multiplying the end-solution
by the term e−α0z [4]. Therefore, in solving (1) one
should consider only the term Aθ2, which is most impor-
tant among the higher order modes [1]. Assuming also
that coupling coefficient D is mode-independent, Eq. (1)
can be written as follows [2]:
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The derivative ∂t/∂z can be obtained using the group
velocity of a mode with characteristic angle θ, which is

dz

dt
=

c

n(1 + θ2/2)
. (3)

Neglecting the delay n/c common to all modes, Eq. (2)
could be rewritten [2], and after applying the Laplace
transform

(658)
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p(θ, z, s) =
∫ ∞

0

e−stP (θ, z, t)dt, (4)

Eq. (2) agrees with the time-independent power flow
equation
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except for the factor σ2 [1]. One can therefore use the so-
lution of the time-independent power flow equation, if A
is replaced by Aσ2. For the Gaussian input distribution
one obtains [1]:

p(θ, z, s) = f(z, s) exp
(−θ2/Θ2(z, s)

)
, (6)

where Θ2(z, s) and f(z, s) are described by Gloge [1].

For continuous wave excitation (s = 0), the angular
width Θ(z, 0) changes monotonically from Θ0 to Θ∞ as z
increases. Since the width Θ∞ characterizes a distribu-
tion which propagates unchanged (at steady state) and
with the minimum overall loss coefficient γ∞, it seems
practical to excite this distribution right from the begin-
ning (Θ0 = Θ∞) [2]. The closed-form Laplace transform
of (6) exists only for the approximation given in the limits
z ¿ 1/γ∞ (short fiber) and z À 1/γ∞ (long fiber) [2].

In the case of short fiber, Eq. (6) becomes [2]:
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The total output is obtained from the integration
p(θ, z, s) over all angles [2]. With reference to (7) and
for z ¿ 1/γ∞, one obtains [2]:
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. (8)

If one sets f(0, s) = 1, which corresponds to an infinitesi-
mally short input pulse of energy 1, the Laplace transfor-
mation of (8) yields the impulse response of the fiber [2]:
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0 z), (9)

where Q(t) is limited practically to a time interval nar-
rower than nθ2

cz/(2c), which is the delay between the
fastest and the slowest mode (θc is the fiber’s critical an-
gle).

In case of a long fiber, Eq. (6) assumes the form [2]:
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which leads to
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where p is integrated over all angles θ, as before. In-
troducing σ =

√
1 + ns/2cA into (12), one can form

the Laplace transform of q(s). By using the condition
γ∞z > 1, the impulse response of the fiber is
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Besides the analytical solution of the time-dependent
power flow Eq. (2) which is obtained by Gloge [2], two nu-
merical approaches for solving the time-dependent power
flow Eq. (1) have been reported recently: implicit finite-
-difference method (Crank-Nicholson scheme) by Breyer
et al. [3] and explicit finite-difference method in the ma-
trix form by Mateo et al. [5]. In this work using Gloge’s
analytical solution of (2), we calculate the impulse re-
sponse of the SI POF investigated earlier by Breyer
et al. [3] and compare our analytical results with their
numerical results.

3. Results

Using Gloge’s analytical solution of the time-
-dependent power flow Eq. (2) we have calculated im-
pulse response of SI POF investigated earlier by Breyer
et al. [3]. The fiber analyzed is the PREMIER GH4001
(GH fiber) from Mitsubishi with the diameter of 1 mm
and numerical aperture NA = 0.5 (corresponding to inner
critical angle of θc = 19.5◦) and 0.15 dB/m of nominal
attenuation. In obtaining the impulse response of GH
fiber, Breyer et al. [3] have assumed mode-dependent at-
tenuation α(θ) and mode-dependent coupling coefficient
D(θ). In contrast, Gloge’s analytical solution of the time-
-dependent power flow Eq. (2) is obtained assuming a
constant coupling coefficient D and constant A (A is the
second order multiplicative factor in the series expansion
of the mode-dependent attenuation α(θ)). In order to
obtain the value for A for the fiber analyzed, we used
the graph for α(θ) in Fig. 1 proposed earlier by Mateo

Fig. 1. Mode-dependent attenuation α(θ) for GH fiber
proposed by Mateo et al. [6] (dashed line) and our fit
obtained using the function α(θ) ≈ α0 +Aθ2, with α0 =
0.0159 1/m and A = 0.4025 (rad2 m)−1 (solid line).

et al. [6] and used in numerical calculations by Breyer
et al. [3]. Since mode-dependent attenuation can be writ-
ten in the form α(θ) ≈ α0 + Aθ2, one can determine
A by fitting the graph shown in Fig. 1 using this func-
tion. In this way, we have obtained α0 = 0.0159 1/m
and A = 0.4025 (rad2 m)−1. The value of the constant
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coupling coefficient D = 1.171 × 10−4 rad2/m has been
used in the first approach to the modeling of mode cou-
pling in the analyzed fiber by Mateo et al. [6], which we
have adopted in this work. One should mention here that
modeling the mode coupling process with a constant D
is commonly done by many other authors [1, 4, 7, 8].

Fig. 2. Analytical results for the impulse response for
different fiber lengths for GH fiber (this work).

Fig. 3. Numerical results for the impulse response for
different fiber lengths for GH fiber obtained by Breyer
et al. [3] (retraced).

A Dirac impulse in time and a mode distribution with
the width at 1/e of Θ0 = Θ∞ = 9.85◦ (FWHM = 8.35◦)
at the beginning of the fiber is used. Equation (9), valid
for short fiber lengths z ¿ 1/γ∞ = 41.3 m, has been
used for calculating impulse response at z = 10 m. Equa-
tion (12), valid in a case of long fiber lengths z À 1/γ∞,
has been used for calculating impulse response at fiber
lengths z = 50, 100 and 150 m. Our analytical re-
sults for the impulse response of the fiber analyzed are
shown in Fig. 2. In Fig. 3, numerical results obtained
by Breyer et al. [3] for impulse response are shown for
the same fiber lengths. A good agreement between these
results is apparent. One can observe that, at short fiber
lengths (z = 10 m), the mode-dependent attenuation is

the dominant effect. With increasing fiber length, mode
coupling begins to influence the impulse shape changing
it to Gaussian.

Finally, the power exiting the fiber at the highest an-
gles (tails of the Gaussian launch beam) has the longest
delays. This suggests an efficient means of improving
the fiber capability by spatial filtering-out of the tail at
higher angles [5]. As most power is confined within the
range of lower angles, such filtering-out of the power at
the highest angles will cause only a small power loss while
producing a narrower overall impulse response.

4. Conclusion

The analytical solution of the time-dependent power
flow equation is employed to calculate the impulse re-
sponse in a step-index plastic optical fiber that was in-
vestigated earlier by Breyer et al. [3]. Our results for the
impulse response at different fiber lengths agree well with
the earlier reported numerical results [3]. It has been ob-
served that at short fiber lengths mode-dependent atten-
uation is the dominant effect. With the increasing fiber
length, mode coupling begins to influence impulse re-
sponse of the fiber, resulting in the impulse shape chang-
ing to a Gaussian-like shape. In general, using the infor-
mation provided by the space-time power distribution,
fiber transmission characteristics can be enhanced using
an appropriate spatial filter. In doing so, a good fiber
characterization can be applied to optimize the fiber per-
formance in POF links.
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