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Engineering and Advanced Digitalization of Photonic
Structures with Bound Field in the Continuum
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We describe a method for generation of complex optical potentials which support a bound state of the
electric field in continuous part of the spectrum. It is based on deep analogy between quantum mechanical and
electromagnetic phenomena and relies on the application of supersymmetric quantum mechanics to generate a
smoothly varying complex optical potential, together with the corresponding electric field function for the (single)
localized state. However, the obtained potential profile is generally a strongly oscillating function which requires
additional processing to make it suitable for practical realization. With this goal in mind, i.e. the construction
of a realizable photonic crystal with complex permittivity which supports one bound state in continuum,
we have developed an original scheme of digital grading. It approximates the values of the complex relative
permittivity in such manner that the final structure may be realized by assembling layers of homogeneous materials.

PACS numbers: 11.30.Pb, 03.65.Ge, 42.25.Bs

1. Introduction

Supersymmetric quantum mechanics (SUSYQM) is a
method that can be used to obtain operators which
are almost isospectral, except that one of them has
an additional bound state in continuum. Von Neu-
mann and Wigner [1] found that the Schrödinger equa-
tion may have regular solutions which represent bound
states in the continuum part of the spectrum, and Her-
rick and Stillinger [2–4] have shown that bound states
in continuum may exist in atoms and molecules. How-
ever, while the existence of normalizable eigensolutions
for non-local potentials is rather well explored [5], a sys-
tematic approach for local potentials is still missing.

In addition, there is a close analogy between quantum
mechanical and electromagnetic phenomena. In Ref. [6],
the existence of bound states in radiation continuum is
illustrated on the example of two parallel gratings and
two arrays of thin parallel cylinders. Also, in Ref. [7].
it is shown that photonic crystals with defects may have
localized states in the continuum part of the spectrum.

In this paper, we start from the modified form of the
Helmholtz equation for the electric field, which is analo-
gous to the Schrödinger equation (and so are their gen-
eral solutions), in order to construct complex permittiv-
ity functions which correspond to the selected initial one
in terms of electric field spectrum. Each of the newly
obtained complex permittivity profiles supports one and
only one localized normalizable function of the electric
field in the continuum part of the spectrum. We first
give a short description of the SUSY procedure, de-
tails of which can be found in [8, 9] applied to a quan-
tum mechanical problem, and then implement it to the
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case of flat permittivity. Finally, we present somewhat
non-standard digital grading approximation of generated
complex permittivity and numerical solution for the elec-
trical field function corresponding to it, with satisfactory
similarity to the original solution.

2. Theoretical framework

Consider electromagnetic (EM) waves propagating
along the x-direction, through a material which is linear
and non-homogeneous in this direction and with constant
magnetic permeability µ = 1. Only linearly polarized
TE modes are considered, i.e. E = Eey which are also
monochromatic, i.e. E(t) = E e iω0t. Starting from the
usual form of the Helmholtz equation and solving it by
separation of variables E(x, y, z, t) = E(x)E(y)E(z)e iω0t

one can show that E(z) = E e iβz, E(y) = const, and
most importantly

d2E(x)
dx2

+ k2
0ε(x)E(x) = β2E(x), (1)

where k0 = ω0/c.
Equation (1) is analogous to the Schrödinger equa-

tion − ~2
2m

d2ψ(x)
dx2 + U(x)ψ(x) = Eψ(x). As described

in Ref. [9], the idea is to construct isospectral operator
− d2

dx2 − k2
0εss(x, ρ, C), with complex constants ρ and C,

by using standard SUSY procedure. The derived for-
mula, as given in [9], reads

εss(x) = ε(x) +
2
k2
0

d2

dx2

[
ln
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ρ

+
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]2
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)]
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where Eβ(x) is the eigenstate corresponding to a chosen
eigenvalue β2. Thus, the permittivity given by expression
(2) is isospectral to ε(x), and the additional (so-called
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supersymetric) eigenstate for a chosen eigenvalue, which
was used for the SUSY procedure [9], is given by

Eβss(x)

= Cβss

Eβ(x)
[
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∫
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dx
E2

β(x)

]

ρ +
∫
(x)

E2
β(x)

[
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∫
(x)

dx
E2

β(x)

]2

dx
. (3)

It can be proven that if the initial eigenvalue β2 cor-
responds to the continuous part of the spectrum, then
its supersymetric eigenstate is strictly a bound state in
continuum, provided that the appropriate choice of pa-
rameters ρ and C is made [10].

First, we need to choose an initial permittivity with
continuous spectra for generating a new (required) one
with bound state in continuum. The simplest approach
is to choose a “flat” initial permittivity ε. The general so-
lution of (1) is then given by Ek(x) = sin(kx)+C cos(kx)
where k =

√
k2
0ε− β2. Clearly, the spectrum of the flat

permittivity is completely continuous for β2 < k2
0ε. The

aim is to employ the SUSY transform to find a complex
permittivity that accommodates a bound state at the se-
lected eigenvalue. The final electric field function can be
expressed as

Ess(x)

∼ C cos(kx) + sin(kx)

ρ + x
2 − sin(2kx)

4k − C cos2(kx)
k + C2

[
x
2 + sin(2kx)

4k

] , (4)

while the corresponding supersymmetric permittivity is
given by

εss(x) = ε(x) +
2
k2
0

d2
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[
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x
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(
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2
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sin(2kx)
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) )]
. (5)

The discussion on selecting the appropriate values of pa-
rameters ρ and C is given in Ref. [9], and in the following
numerical example one such choice is illustrated.

The ultimate goal is to enable practical realization, i.e.
to construct a photonic crystal with permittivity ε(x),
given by expression (5), which supports the bound state
in continuum. This can be accomplished by applying the
digital grading approximation directly to the supersym-
metric permittivity and then composing very accurately
the obtained digitally graded function.

3. Digital grading of the complex relative
permittivity

The digital grading approximation of a complex func-
tion is uncommon, therefore it will be explained here in
detail, assuming that the reader is familiar with the stan-
dard digital grading approximation of real profiles.
The first step is to define the segment of the structure

that will undergo digital grading. Here we select a do-
main symmetric around zero, as both the real and the
imaginary part of the final function are almost symmet-

ric or antisymmetric. The peripheral parts of the func-
tion are “flattened” by taking the average values within
particular areas. It can be shown that the value of the
initial (constant) relative permittivity may be taken as a
satisfactory estimate of that flat outer part of the super-
symmetric permittivity. Such averaging of the peripheral
area implies that the corresponding field will not be ex-
actly bound, but it will oscillate with sufficiently small
amplitude and frequency.
The second step involves the application of digital

grading formalism to both the real and the imaginary
part of relative permittivity in previously defined central
area, in the usual manner, as presented in [11], with a
few modifications.

In the procedure applied here, three levels (values) are
used to approximate the final function, instead of only
two values as in Ref. [11]. This improves the accuracy of
the approximation, but complicates the construction of
the obtained structure by increasing the number of con-
stituent materials. Supersymmetric relative permittivity
is a strongly oscillating function around some average
value that is almost equal to the value in bulk or outside
of the digitally graded area, so grading with only two lev-
els gives poor results and cannot be utilized. Hence, an
additional (medium level) is introduced as the average
value of the function outside of the digitally graded area,
namely as in the “flattened” area. The higher and the
lower level are defined as in [11], as the extrema of the
function over the entire domain.

As described in [11], the complete domain is divided
into intervals which are then individually approximated
with two different level combinations: the medium and
the high level or the medium and the low level as shown
in Fig. 1. Those intervals will be from now on referred
to as “common cells”. Thus, the common cell represent
a standard interval where the graded approximate func-
tion (both, the real and the imaginary part) has only
two values or levels. The average value of εss(x) deter-
mines the pair of levels which is selected for each com-
mon cell. In more detail, the medium and the high level
are used to describe a particular cell if the average value
of εss(x) within it is greater than the medium level, while
the medium and the low level combination is used in the
opposite case.

However, the smallest homogeneous units intended for
deposition are not the segments occupied by individual
levels in each common cell, but the subcells which will
be introduced later.

The width of each level within a particular cell depends
on the value of the integral S =

∫
Cell

|εss(x)− εmed|dx
where εmed is the value of one of the two levels ap-
pearing in a particular cell used as reference. In this
work, by definition, it is always assumed that εmed is
the value corresponding to the medium level as it is
the only level present in each cell. The width of a non
medium level whigh/low, which is either high or low for a
specific cell, is defined by the next relation whigh/low =

S
|εmed−εhigh/low| . The width of the medium level is then
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Fig. 1. Realization of the complex digitally graded
function εssdg. Within one common cell interval of dig-
itally graded real and imaginary part, three subcells-
-subintervals are marked by dashed lines. 1st subcell
(red) is characterized by a combination of low level real
part and low level imaginary part. 2nd subcell (yellow)
is characterized by a combination of low level real part
and medium level imaginary part. 3rd subcell (blue)
is characterized by a combination of medium level real
part and medium level imaginary part.

wmed = d−whigh/low, where d represents the width of the
cells.
Finally, in the third step previously obtained real and

imaginary digitally graded functions are used to compose
the complex digitally graded structure. The complex lev-
els are introduced as combinations of real and imaginary
levels. By combining three real and three imaginary lev-
els, nine different complex levels are obtained. If two-
-level digital grading approximation was used then such
combining would provide 2× 2 complex levels.

This procedure entails the division of each common
cell into subcells so that exactly one complex level can
be assigned to each subcell, as shown in Fig. 1. The
whole structure can thus be constructed in practice by
deposition of layers of different materials corresponding
to each subcell. This implies that each subcell consists of
one specific layer of suitable material chosen from the set
of nine different materials if three-level digital grading is
considered, or from the set of four materials if conven-
tional two-level digital grading is in use.

4. Numerical examples and discussion

Depending on the selection of values of β, ε and λ0 for
the flat optical potential, various supersymmetric optical

potentials are obtained. One can take for example: k =
3 mm−1, ε = 5, λ0 = 630 µm, where k0 = ω0/c = 2π/λ0

denotes the wave number outside of the digitally graded
area (in the homogenous part, which can be considered
in the limit x → ±∞), with relative permittivity εss = ε
as Θss(x → ±∞) = −k2

0ε. The wave number k defines
the eigenvalue β for which the SUSY formalism is em-
ployed. The remaining parameters are then calculated
as: k0 = 10 mm−1, β2 = k2

0ε − k2 = 491 mm−2. In ad-
dition, C and ρ are defined so that the supersymmetric
eigenfunction is normalizable: C = 3+ 3i , ρ = 9 mm. In
the numerical example treated here, three real and three
imaginary levels of relative permittivity are calculated:

Re(εhigh) = 5.1513, Im(εhigh) = 0.15871,

Re(εmed) = 5, Im(εmed) = 0,

Re(εlow) = 4.9318, Im(εlow) = −0.15565. (6)
The combinations of these levels yield nine different ho-
mogeneous materials whose relative permittivity values
are

εssdg1 = 5.1513 + i∗0.15871, εssdg2 = 5.1513,

εssdg3 = 5.1513− i∗0.15565, εssdg4 = 5 + i∗0.15871,

εssdg5 = 5, εssdg6 = 5− i∗0.15565,

εssdg7 = 4.9318 + i∗0.15871, εssdg8 = 4.9318,

εssdg9 = 4.9318− i∗0.15565. (7)

This combination of parameters is not exclusive. The
set of parameters given by Eq. (7) is just an illustra-
tion, and this example is generated so that the values of
real and imaginary parts of dielectric permittivities are
within realizable limits, the condition that can obviously
be satisfied by other parameters combinations. As al-
ready pointed out, some materials must have negative
imaginary part of the dielectric permittivity, which cate-
gorizes them as active dielectrics [12, 13]. In our opinion,
there is an additional approach to realization of mate-
rials described by Eq. (7). It relies on (electrically or
optically driven) quantum systems such as quantum cas-
cade laser, quantum amplifier or multiple quantum wells
(dots), which exhibit different values of dielectric per-
mittivity from the background permittivity [12, 13]. The
sign and magnitude of real and imaginary part of this
resultant permittivity depend on the design of the quan-
tum structure in question (e.g. on widths of the well and
the barrier layers, and on the material composition). For
instance, materials with indices 3, 6 and 9 from Eq. (7)
may be created so to have predefined dielectric constants
at a given frequency by varying e.g. only the layer widths,
within relatively narrow limits, since these permittivities
are quite similar. Apparently, the same applies for group
of materials with indices 1, 4, and 7, as well as 2, 5 and 8.

Depending on the wavelength of the electromagnetic
mode, the dimension of the whole structure in the x-
direction can be varied. The minimal thickness of an
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individual layer within the generated structure is limited
by the numerical step used in calculations, which is here
set to d = 1µm. The obtained electric field in the dig-
itally graded structure is compared in Fig. 2 with the
field of the smoothly graded structure, corresponding to
the same eigenvalue. Evidently, the differences are quite
small which confirms the validity of the applied approx-
imation.

Fig. 2. Comparison of the electric fields for the initial
(smoothly graded) permittivity and its digitally graded
equivalent. The initial conditions are the same within
the central parts of the structures, so the differences be-
tween the approximated and the “accurate” electric field
functions are very small therein. The biggest difference
appears at the end of the domain, which is here enlarged
for improved readability.

Undoubtedly, the nature of the problem is such that it
is very difficult to perform an accurate realization of the
obtained results, because domain of the profile is concep-
tually infinite. In addition, the flattening of the periph-
eral areas of the potential converts the truly bound state
into an oscillating one, as already pointed out. Never-
theless, the described procedure allows us to construct a
digitalized structure which is experimentally realizable,
and provides a satisfactory approximation to the theo-
retical prediction.

5. Conclusion

The SUSY method was used to generate complex op-
tical potential with a localized electric field state in the

continuum part of the spectrum. The obtained smooth
structural profile is then processed by the digital grad-
ing technique, adapted to the case of strongly oscillating
complex function of the real argument so that the struc-
ture may be realized by compiling the layers of homoge-
neous materials.
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