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Diffraction of Laguerre-Gaussian Beam by a Helical Axicon
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In this article the transformation of the Laguerre-Gaussian beam with radial mode number n and az-
imuthal mode number l, into a vortex, diverging or nondiverging Bessel beam with increased, decreased or
zeroth phase singularity order has been investigated theoretically. We deduce and study analytical expressions
for the amplitude and intensity distribution of the diffracted wave field in the process of Fresnel diffraction,
using the stationary phase method, and also, for the vortex radius and the propagation distance of the output field.
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1. Introduction

The nondiverging (“nondiffracting”) beams have at-
tracted an increased interest due to their intriguing prop-
erties and interesting applications [1]. It was shown by
Durnin et al. [2] that optical fields with Bessel func-
tion transverse amplitude profile can exhibit nondiverg-
ing properties during their propagation, remaining their
transverse intensity profile unchanged in form and dimen-
sions in a defined ranging interval. The high-order Bessel
beams having the phase azimuthally varying as exp(i lϕ),
where ϕ is the azimuthal coordinate, l is an integer, are
characterised by helical phasefront and are vortex beams.
In Ref. [3] the authors report about transformation of
Laguerre-Gaussian beam, LGl

n=0, into a Bessel beam of
the same topological charge as the incident one. The
possibility to transform a LGl

n=0 beam into a vortex,
diverging or nondiverging Bessel beam, which can have
increased or decreased phase singularity order, or into a
zeroth order Bessel beam, by means of a helical axicon
(HA), has been shown recently in [4]. In this article we
solve a more general problem than in [4] by considering
the incident LG beam with radial mode number different
from zero, namely, the diffraction of the LGl

n6=0 beam by
helical axicon.

The incident beam is a Laguerre-Gaussian beam with
radial mode number n and azimuthal mode number l > 0,
defined in cylindrical coordinates as [5]

U l
n(r, ϕ, z) = Cl,n

w0

w(z)

(
r
√

2
w(z)

)l

Ll
n

(
2r2

w2(z)

)

× exp
( −r2

w2(z)

)
exp

(
− i

(
kz + k

r2

2R(z)

−(2n + l + 1) arctan
(

z

z0

)))
exp(− i lϕ), (1)

where z0 = kw2
0/2 is the Rayleigh distance, w0 is the

beam waist of the fundamental or Gaussian mode (n = 0,
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l = 0), w(z) = w0[1 + (z/z0)2]1/2 is the beam transverse
amplitude profile radius of the fundamental mode at dis-
tance z from its beam waist, and R(z) = z[1 + (z0/z)2]
is a real on-axial radius of curvature. Ll

n(2r2/w2(z)) is
the generalized Laguerre polynomial of n-th order, and
the coeficient

Cl,n =
2√

1 + δ0,l

√
n!

π(l + n)!
.

The helical axicon is a hybrid of an axicon and a spi-
ral phase plate. Its transmission function in the thin
transparency approximation (approximating sin γ ≈ γ)
is given by

T (r, ϕ) = A(r) exp (iαr − ipϕ) , (2)
where the axicon parameter α = k(n − 1)γ is connected
to its refractive index n for the incident beam of wave-
length λ and its internal angle (the angle on the axicon
base) γ, and k is wave number. The integer p is the topo-
logical charge of the phase spiral plate, and also of the
helical axicon (its sign defines the rotation direction of
the phase layer, whereas its value shows how many times
the phase is changed for a rate of 2π in a 2π cycle around
the mode circumference).

The incident beam is entering orthogonally to the
plane ∆(r, ϕ, ζ), where the helical axicon is situated, a
distance z = ζ from its beam waist, passing with its op-
tical axis z through the centre of the HA. At this distance
the transverse amplitude profile radius of the LG beam
is [6]:

σl
n(ζ) = w(ζ)

√
2n + l + 1 . (3)

The function A(r) in Eq. (2) is beam truncation function,
when the helical axicon radius R0 is smaller or equal to
σl

n(ζ), defined as

A(r) =

{
1, when β > 1,
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)
, when β ≤ 1

(4)

with β = R0/σl
n(ζ).

The intensity distribution of the incident beam, at dis-
tance z = ζ, is

(557)



558 S. Topuzoski, Lj. Janicijevic
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2. The diffracted wave field and intensity
distribution

In the observation screen Π (ρ, θ, z), situated at a dis-
tance (z − ζ) from the diffractive optical element plane,
the wave field in the point (ρ, θ, z) is found using the
Fresnel–Kirchhoff diffraction integral [7]:
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where ∆ is the area of the diffractive optical element
which contributes to the diffraction. The integration over
the azimuthal coordinate results into
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where we have denoted: α/k = α0 = (n− 1)γ, while the
integration over the radial coordinate has been performed
using the stationary phase method [7]. The solution is
evaluated around the stationary point

rc =
α

k
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.

Thus, the analytical expression for the diffracted wave
field is derived in the form
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where the longitudinal phase φ is
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The output Bessel type beam has a phase singularity
along its optical axis ρ = 0 and carries topological charge
l + p, except for the case when l and p have equal values
but opposite signs (l − p = 0). In longitudinal direction
the beam is described by Laguerre-Gaussian function. It
is diverging beam (the Bessel function argument depends
on the z coordinate).

As we have shown earlier in [4], for suitable choice
of the incident beam parameters (when the HA is
situated in the beam waist plane, where ζ = 0,
R(ζ) = R(0) → ∞), instead being described with
Eq. (7), the output beam is obtained as a nondiverging
Bessel beam and is defined as
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where the longitudinal phase is
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while the critical point value is r′c = α0z, and

A(r′c) =

{
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n(0) > 1,

circ(r′c/R0); when R0/σl
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The intensity distribution of the beam (8) is
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or, it can be, also, written as
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The vortex radius of the nondiverging Bessel beam (9) re-
tains its value unchanged within the propagation interval.
It can be calculated as ρmax = µl+p,1/kα0, where µl+p,1

is found as a root of the equation: |J|l+p|+1(kα0ρ)| =
|J|l+p|−1(kα0ρ)|.

When β ≤ 1, the function A(r′c) dictates the longitu-
dinal truncation of the outgoing Bessel beam. The beam
has maximum propagation distance

Lmax = βσl
n(0)/α0 = R0/α0. (11)

The function
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in Eq. (10), being of Laguerre-Gaussian type, is similar
to that one in the expression (5); the difference is that
it is related to the axial variable z instead to the radial
variable r, and it has half integer power in its definition.
When β > 1 the beam ranging distance is

σl+1/2
n = (w0/α0)

√
2n + l + 3/2 . (12)

Fig. 1. The intensity variation along z axis for:
(a) p = 1, n = 0, l = 1, (b) p = 1, n = 1, l = 1 (dotted-
-dashed curve), p = 1, n = 2, l = 1 (solid curve).

The inhomogeneity of the intensity along longitudinal
direction can be seen in Fig. 1, where the intensity has
been calculated in the first bright ring, at position ρmax,
based on Eq. (9), when A(r′c) = 1, for different values of
p, n and l. The used parameters for the axicon and the
incident beam are: γ = 1.35◦, n = 1.48 for wavelength
λ = 980 nm, w0 = 3 mm. Along the longitudinal di-

Fig. 2. Radial intensity distribution at distance
z = 450 mm for: (a) p = 1, n = 1, l = 1, (b) p = −1,
n = 1, l = 1.

rection the intensity oscillates, reaching maximum values
(n+1) times (similarly to the radial intensity distribution
of the incident beam). The intensity interceptions with
zero-values points along the z-coordinate, and the beam
nondiverging feature could be interesting for particles op-
tical trapping in few spatially separated chambers [1].

In Fig. 2 we have shown the radial intensity distribu-
tion when A(r′c) = 1: (a) when p = 1, l = 1, n = 1,
the output beam is vortex, while when the topological
charges of the HA and the incident beam are equal in
modulus but with opposite signs (p = −l), the Bessel
beam is chargeless (b). When being specialized for n = 0
the results get the forms as in [4].

3. Conclusion
We have derived the analytical expression for the

diffracted wave field when LG beam of phase singular-
ity l and radial mode number n undergoes diffraction by
helical axicon. Further, the propagation distance and the
vortex radius of the output beam have been discussed.
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