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Excitations and Decays of Rubidium Rydberg States Induced
by Blackbody Radiation
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The rates of excitations and decays induced by blackbody radiation were calculated in the single-electron
Fues’ model potential approach for states up to n = 100 in rubidium s-, p- and d-series. On the basis of the
calculations, general regularities for maxima rates of blackbody radiation induced decays and excitations were
ascertained and a simple polynomial-based approximation formula was proposed for blackbody radiation induced
decay and excitation rates of Rydberg states. A temperature parameterization for T = 50–1500 K was also
proposed and respective matrices of coefficients were calculated.

PACS numbers:

1. Introduction

Blackbody radiation (BBR) is a ubiquitous and in-
evitable perturbing factor, which affects neutral atoms
unless the ambient temperature T = 0 K. It should be
taken into account in both laboratory experiments and
applied devices engineering. At T = 50–1500 K the
number of thermal photons reaches the maximum in the
mid-infrared and far-infrared. These wavelengths corre-
spond to gaps between the Rydberg states, and therefore
blackbody radiation affects mainly highly excited states.
Thermal photons ionize the Rydberg states [1, 2] and
also depopulate them [3] causing the redistribution of
electrons by virtue of induced excitations and decays.

Since the pioneer papers [4, 5] interlevel transitions
induced by BBR were investigated without separation
to BBR-induced decays and BBR-induced excitations.
Only the problem of superradiance in the ensembles of
the Rydberg atoms requires the account of the decays
stimulated by thermal photons; BBR-induced excitations
are also the key part of the correct qualitative and quan-
titative explanation of the selective field ionization pro-
cesses [2].

This paper provides a systematic investigation of BBR-
-induced decays and BBR-induced excitations separately
in rubidium s-, p- and d-series with an account of fine
structure of the states. The proposed approximation for-
mulae for BBR-induced decay and excitation rates (P d

nlj

and P e
nlj , respectively) are supplied with a numerical

data.

2. Directly calculated decay and excitation rates

In one-electron dipole approximation (it is valid be-
cause rubidium has a large energy gap between one-
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-electron and two-electron excitations; BBR intensity is
low at T = 50–1500 K), BBR-induced decay and excita-
tion rates for |nlj〉-state may be calculated in the follow-
ing way (atomic units are used unless otherwise stated
explicitly):

P d
nlj =

4α3
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where α is the fine structure constant, T is the tem-
perature of BBR, k — Boltzmann constant, ωnn′ =
|Enlj − En′l′j′ |/~:

Mnlj→n′l′j′ =
∫ ∞

0

Rn′l′j′(r)rRnlj(r)r2 dr (3)

is a radial matrix element of |nlj〉 → |n′l′j′〉 transition
with radial wave functions Rnlj(r) and Rn′l′j′(r), respec-
tively. In this paper, the Fues’ model potential radial
wavefunctions for the valence electrons in neutral atom
[1] were used for the calculations of matrix elements (3):

Rnlj(r) =
2
ν2

√
(2λ + 2)nr

nr!Γ (2λ + 2)
e−r/ν

(
2r

ν

)λ

×1F1

(
−nr; 2λ + 2;

2r

ν

)
, (4)

where ν is the effective principal quantum number (Enlj

= –1/(2ν2)); 1F1(a, c, x) is the confluent hypergeomet-
ric function, (a)n = a · (a + 1) · . . . · (a + n − 1) is the

(532)
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Pochhammer symbol, and nr — the number of nodes in
the radial wavefunction. For s-states nr = n − n0 + 1;
for p- and d-states nr = n − n0, where n0 is the princi-
pal quantum number of the lowest state for the valence
electron in series (5s, 5p, 4d in rubidium). The effective
orbital quantum number λ is determined from the equa-
tion ν = λ + nr + 1. Thus, it is necessary to know only
one experimental parameter Enlj to construct a radial
wavefunction (4). Vast data for Enlj in the Rb states
may be found, for example, in NIST database [6].

The Fues model potential wave functions (4) not only
provide a good representation of the Rydberg states [7],
but also result in an analytical form of matrix ele-
ment (3):

Mnlj→n′l′j′ =
1
4

Γ (λ + λ′ + 4)√
Γ (2λ + 2)Γ (2λ′ + 2)

×
√

(2λ + 2)nr
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(2λ′ + 2)n′r
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(
2ν′

ν + ν′

)λ+2

×
(
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F2(λ + λ′ + 4,−nr,−n′r;

2λ + 2, 2λ′ + 2; 2ν′/(ν + ν′), 2ν′(ν + ν′)), (5)
where F2(a, b1, b2; c1, c2;x1, x2) is a generalized hypergeo-
metric function with five parameters and two arguments.

Matrix elements (5) were calculated for necessary tran-
sitions with n up to 200 and stored for quick implemen-
tation in (1) and (2) at different temperatures. The to-
tal depopulation rates at T = 300 K are in good agree-
ment with previous results [4]. The calculations demon-
strated that photoexcitation and photodecay rates have
distinct maxima. The state with the maximal rate in a se-
ries changes with temperature, because the maximum of
the spectral radiant energy density uω(T ) is shifted with
changing temperature (≈ 2.82kT ). That is, the max-
imum of energy density coincides with different transi-
tions at different temperatures. As the transitions to the
nearest states (with energy gaps ≈ 1/ν3) give the main
tribute to rates, the state follows the equation:

Cm =
100

νT 1/3
,

where Cm is the constant of the maximum for the se-
ries, and T is in kelvin. The values for Cm were found in
s-, p-, d-series of rubidium for BBR-induced decay, exci-

TABLE
The constants of the maximum
in Rb (rubidium).

Series s p d

decay 1.8 1.65 1.7
excitation 1.9 2.05 2.0
total 1.85 1.8 1.8

tation and total depopulation (sum of decay and excita-
tion) rates. The maximum constants are presented in the
table, which demonstrates a quantitative difference be-
tween two qualitatively different photoinduced processes.

3. Approximation

The number of the Rydberg states in each investigated
series of rubidium is infinitely large; therefore it is not
efficient to represent direct calculation results for BBR-
-induced decay and excitation rates in the form of vast
tables. The more proper and practical approach is to
construct a simple approximation.

The transitions to the closest in energy states (|n −
n′| ∼ 1) provide a main tribute to the rates of both pho-
toinduced decay and photoinduced excitation processes.
Therefore the first step in an approximation construction
is to replace ωnn′ with interlevel energy gap asymptotic
1/ν3 and matrix elements with ν2 asymptotic. The sec-
ond step of the approximation is the account of other
transitions (|n − n′| > 1) by means of introducing the
inverse powers of ν in a polynomial form in the terms of
the dimensionless parameter x = 100/(νT 1/3):

P
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d(e)
1 x + a

d(e)
2 x2 + a

d(e)
3 x3)

ν̃5 [exp(0.315792x3)− 1]
(6)

with ν̃ = ν
100 . Equation (6) requires the temperature of

BBR in kelvin and provides decay and excitation rates
in inverse seconds (1/s). a

d(e)
0 — coefficients fix correct

asymptotic behavior for high-n Rydberg states in the se-
ries and do not depend on the temperature. The terms
with the coefficients a

d(e)
1 , a

d(e)
2 , a

d(e)
3 reflect the behav-

ior of the approximation near the maximum and on the
shallow slope. The coefficients a

d(e)
1 , a

d(e)
2 , a

d(e)
3 slightly

depend on the temperature and may be parameterized in
the following way

a
d(e)
i =

2∑

k=0

b
d(e)
ik

(
T

100

)−k

, i = 0, 1, 2, 3. (7)

So, the knowledge of a
d(e)
0 — coefficient and b

d(e)
ik — ma-

trix provides enough information on BBR-induced decay
(excitation) rates in a given series.

4. Results

Direct calculations of BBR-induced decays (1) and ex-
citations (2) in each series for n up to 100 gave a basis
for fitting a

d(e)
i — coefficients in Eq. (6) as the first step.

Then the sets of a
d(e)
i — coefficients at different tem-

peratures were used for fitting b
d(e)
ik — coefficients. The

obtained data demonstrates a good approximation of di-
rect calculations (see Fig. 1).

4.1. s-states

ad
0 = 1.104, bd

ik =



−0.2391 0.0595 0.0314
−0.1705 0.1821 −0.0844
0.1262 −0.0332 0.0225


 ,
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Fig. 1. Excitation rates (1/s) of Rydberg states in
d3/2-series at 600 K; circles — direct calculations, full
line — approximation.

ae
0 = 0.9342, be

ik =




0.1310 0.1185 −0.0443
−0.7012 0.0028 0.0193
0.4646 −0.0751 0.0127


 .

4.2. p1/2-states

ad
0 = 1.4885, bd

ik =



−0.5184 0.1206 −0.0406
0.0644 −0.0680 0.0218
0.0666 0.0134 0.0037


 ,

ae
0 = 0.5732, be

ik =




0.1968 0.1727 −0.0608
−0.6840 −0.1673 0.0676
0.4136 0.0714 −0.0306


 .

4.3. p3/2-states

ad
0 = 1.5414, bd

ik =



−0.5260 0.0325 −0.0047
0.0690 0.0160 −0.0076
0.0681 −0.0194 0.0061


 ,

ae
0 = 0.5505, be

ik =




0.0485 0.2301 −0.0706
−0.4515 −0.4157 0.1581
0.3336 0.1956 −0.0786


 .

4.4. d3/2-states

ad
0 = 1.1936, bd

ik =



−0.9873 0.6452 −0.2224
0.4247 −0.5073 0.1756
−0.0397 0.1441 −0.0486


 ,

ae
0 = 0.8134, be

ik =



−0.1647 0.3949 −0.1385
−0.0770 −0.6981 0.2396
0.1398 0.2623 −0.0916


 .

4.5. d5/2-states

ad
0 = 1.1858, bd

ik =



−1.0085 0.6949 0.2437
0.4394 −0.5832 0.2116
−0.0436 0.1777 −0.0656


 ,

ae
0 = 0.8215, be

ik =



−0.0865 0.2614 −0.0519
−0.2152 −0.4875 0.1002
0.1931 0.1732 −0.0357


 .

5. Conclusion

The Fues model potential was successfully employed
for the calculation of BBR-induced decay and excitation
rates in Rb s-, p- and d- Rydberg states. The obtained
results were approximated with a simple analytical for-
mula (6) and a temperature parameterization (7). They
provide a correct reflection of maximal rates, and devia-
tions in high-n asymptotic area not more than 2%.
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