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Blackbody-Radiation-Induced Decay and Excitation
of Rydberg States in Sodium
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Rates of the blackbody radiation-induced excitation and decay were calculated for the S-, P -, D-series of the
Rydberg states in sodium atoms with the Fues model potential method. Comparisons between three branches of
the state depopulation mechanism (spontaneous decays, blakbody radiation-induced and excitations) were carried
out. Simple analytical formulas were proposed for ratios of the blackbody radiation-induced decay and excitation
rates to the spontaneous decay rate.
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1. Introduction

Recent achievements in production of the Rydberg
atoms stimulated worldwide investigations of highly ex-
cited states. On the one hand the interest to the Rydberg
states originates from their dual nature as quantum ob-
jects with mesoscopic dimensions [1], on the other hand
the Rydberg atoms have large dipole moments enabling
strong interaction between neutral atoms which may be
used in technological applications (for example, quantum
processing of information [2]).

The basic characteristics of atomic states are their en-
ergies and lifetimes. It was pointed out first by Gallagher
and Cooke [3] that blackbody radiation-induced (BBR-
-induced) transitions depopulate the Rydberg states with
rates which are equal to or even exceed the spontaneous
decay rates. Soon afterwards large-scale investigations of
BBR influence on neutral atoms were performed [4–6] for
highly excited states |nl〉 with principal quantum num-
bers n up to 30. By the end of the millennium Rydberg
states in neutral atoms attracted interests of investiga-
tors due to the following reasons: (i) general progress of
experimental techniques (especially in the field of tun-
able lasers) [1]; (ii) exceptionally large electromagnetic
susceptibilities and high sensitivity of Rydberg atoms
to very weak external fields; (iii) wide spread of high-
-performance computers, which allowed to carry out con-
siderable amounts of computation operations with an ad-
equate accuracy within reasonable time intervals. In the
last few years the interaction between BBR and Rydberg
states with principal quantum numbers up to n = 100
was in the focus, e.g. the BBR-induced transitions be-
tween bound levels [7], direct and stepwise ionization
by BBR [8, 9].
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In overwhelming majority of papers on the BBR inter-
action with the Rydberg atoms, the BBR-induced transi-
tions were considered all together (decay, excitation and
ionization) as a depopulation factor for atomic states. In
this paper we study the BBR-induced decays separately
from the BBR-induced excitations for Rydberg states in
sodium S-, P - and D-series (l = 0, 1, 2). The calculated
rates of induced by BBR decays and excitations, P d

nl and
P e

nl, are compared with the rates of spontaneous decays
P sp

nl by calculating the ratios

R
d(e)
nl = P

d(e)
nl /P sp

nl , (1)
which give an evident numerical information on the rel-
ative contribution of the BBR-induced transitions to the
natural level width. The atomic units are used through-
out the paper, if not otherwise specified explicitly.

2. Calculation of the decay and excitation rates
The radiation probabilities in the right-hand side of

Eq. (1) are determined by the matrix elements of the
dipole transitions from the Rydberg level |nl〉 to the lower
(decay) and upper (excitation) bound states |n′l ± 1〉. In
this paper, the wave functions of states are determined
analytically on the basis of the Fues’ model potential with
some modification of parameters for S-states [9–11]. The
model describes a valence electron in a field of atomic
nucleus and electrons of the closed shells (so called core
electrons). The Hamiltonian with the model potential
for a valence electron has the form

Ĥ = −∇
2

2
− Z

r
+

∑

l

Bl

r2
P̂l, (2)

where Z is a net charge of the nucleus and core electrons
(Z = 1 for a neutral atom), r is the distance between the
valence electron and the atomic center, P̂l is a projection
operator onto the space of states with the given orbital
quantum number l. The l-dependent numerical parame-
ters Bl determine the influence of the core electrons on
the total potential and hence, on the wave functions of
the valence electron. After separation of angular vari-
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ables, the Schrödinger equation for the radial wave func-
tions fnl of a neutral atom (Z = 1) may be written as[

∂2

∂r2
− λ(λ + 1)

r2
+

2
r

+ 2Enl

]
(rfnl(r)) = 0, (3)

where λ is an effective orbital quantum number, which
is determined from the centrifugal and core potential, as
follows: λ(λ + 1) = l(l + 1) + 2Bl. The eigenvalue of
Eq. (3) is the energy of a bound |nl〉-state

Enl = − 1
2ν2

nl

, (4)

where νnl = nr + λ + 1, nr determines the number of the
radial wave-function nodes (for the lowest state of a va-
lence electron in P -, and D-series nr = 0; for the lowest
level in S-series nr = 1 [11]). The corresponding eigen-
function is

fnl(r) =
2

ν2
nl

√
(2λ + 2)nr

nr!Γ (2λ + 2)
exp(r/νnl)

(
2r

νnl

)λ

1F1

(
−nr; 2λ + 2;

2r

νnl

)
, (5)

where (a)n = a(a + 1) · . . . · (a + n− 1) is the Pochham-
mer symbol, 1F1(a; c; x) is the confluent hypergeometric
function. The parameter λ is determined by Eq. (4) from
the energy of the state Enl which may be taken from a
database of atomic energy levels (see, for example [12]).

Wave functions (5) are suitable for calculations of the
radial dipole matrix elements

Mnl→n′l′ =
∫ ∞

0

fn′l′(r)rfnl(r)r2dr, (6)

which determine the spontaneous decay rate, as follows:

P sp
nl =

4α3

3(2l + 1)

En′l±1<Enl∑

n′

ω3
nn′

(
lM2

nl→n′l−1 + (l + 1)M2
nl→n′l+1

)
, (7)

where α = 1/137.036 is the fine-structure constant,
ωnn′ = Enl − En′l±1 is the frequency of transition from
the Rydberg state |nl〉 to a state |n′l ± 1〉 with lower en-
ergy En′l±1 < Enl. For the BBR-induced decay rate a
similar expression holds, with each term times the num-
ber density of BBR photons at the ambient tempera-
ture T , determined by the Planck distribution

P d
nl =

4α3

3(2l + 1)

En′l±1<Enl∑

n′

ω3
nn′

(
lM2

nl→n′l−1 + (l + 1)M2
nl→n′l+1

)

exp[ωnn′/(kT )]− 1
, (8)

where k = 3.1668 × 10−6 a.u./K is the Boltzmann con-
stant. Equation (8) with summation over infinite num-
ber of bound states above the state |nl〉 (i.e. over states
|n′l ± 1〉 with En′l±1 > Enl) holds also for the BBR-
-induced excitation rate P e

nl.

The wave functions (5) allow analytical integration in
Eq. (6):

Mnl→n′l′ =
1
4

Γ (λ + λ′ + 4)√
Γ (2λ + 2)Γ (2λ′ + 2)

×
√

(2λ + 2)nr

nr!
(2λ′ + 2)n′r

n′r!
xλ+2

1 xλ′+2
2

×F2 (λ + λ′ + 4,−nr,−n′r; 2λ + 2, 2λ′ + 2; x1, x2) , (9)
where F2(a, b1, b2; c1, c2; x1, x2) is the generalized hyper-
geometric function of two variables x1 = 2ν′/(ν +ν′) and
x2 = 2ν/(ν + ν′), which may be presented as a twofold
sum of (nr + 1) · (n′r + 1) terms with alternating signs.
Due to a strong cancellation of digits, the calculation
of the matrix element (9) requires a high-precision pre-
sentation of the terms in F2, with corresponding exten-
sion of the digit number. Calculations demonstrate a
good agreement of the numerical values for the radial
matrix elements (9) with corresponding values given by
formulae of the quasi-classical WKB approximation in
the quantum defect method [13], which works but only
in the case of very large values of both ν and ν′, so that
|ν − ν′| ¿ ν ≈ ν′. Meanwhile expression (9) holds for
arbitrary values of ν and ν′ and this feature is very im-
portant, since the principal contribution to the sum (7)
(and (8) at rather high temperatures T > (100/ν)3 K)
comes from states with |ν − ν′| ≈ ν.

The values of the ratios (1) are strongly dependent
both on the principal quantum number and on the am-
bient temperature. However, the general property holds
for all the series of states: the rates of the decay and
excitation are nearly equal to one another and both of
them essentially exceed the ionization rate.

Matrix elements necessary for estimations of the rates
(8) of the BBR-induced decays and excitations in S-, P -
and D-series of sodium Rydberg states were determined
and stored for calculations at different temperatures. The
results at T = 300 K are in a good agreement with those
of the papers [4, 5, 7].

3. Approximations for ratios of induced
and spontaneous rates

The calculated rates (8) of the BBR-induced decays
and excitations for the Rydberg states were compared
with corresponding spontaneous decay rates which may
be scaled as P sp

nl ∼ ν−3 [5, 14]. Asymptotic approx-
imations for rather high νnl may be proposed for the
rates (8), in analogy with that for the BBR-induced ion-
ization rate [10]. Numerical calculations demonstrate
that rather simple and accurate approximations hold also
for the ratios (1).

The rates in numerator and denominator of the frac-
tion (1) decrease when ν → ∞, but their ratio will in-
crease, so the contribution of the closest states |n′l ± 1〉
in the sum (8) with ν ≈ ν′ is emphasized in R

d(e)
nl . There-

fore, the transition frequency in the exponent of the
Planck distribution may be estimated as ωnn′ ≈ 1/ν3

nl
and the most reasonable approximation may be written
as
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R
d(e)
nl =

a
d(e)
0 + a

d(e)
1 x + a

d(e)
2 x2

ν2 [exp(0.31579x3)− 1]
, (10)

where x = 100/(νnlT
1/3) is a dimensionless parameter

with the temperature T measured in kelvin, the num-
ber in exponent comes from the Boltzmann constant in
atomic units. From this presentation one can see that
for large ν and T , when the x-parameter vanishes, the
ratio (10) becomes directly proportional to the product
of both parameters

R
d(e)
nl ≈ 3.1666× 10−6a

d(e)
0 · νnlT. (11)

Figure 1 illustrates the precision of approximation (10)
for the numerical values of the ratio Re

nl at T = 300 K in
nP-series of Na, in comparison with the data of straight-
forward calculations according to Eqs. (7)–(9). In partic-
ular, the linear dependence (11) can be seen in the figure
already for ν > 20.

Fig. 1. Relative BBR-induced excitation rates Re
nl for

P-series of Na at T = 300 K. Full line represents approx-
imation (10); diamonds — results of direct calculations
according to Eqs. (7)–(9).

Further analysis demonstrated that the coefficients
a
d(e)
i of the quadratic polynomial in Eq. (10) slightly de-

pend on temperature. To fit this dependence, the second-
-order polynomial in powers of inverse absolute temper-
ature T was proposed

a
d(e)
i (T ) =

2∑

k=0

b
d(e)
ik (100/T )k, i = 0, 1, 2, (12)

which provides an accurate parameterization for the BBR
temperatures T > 100.

4. Results and discussions

On the basis of the fitting procedure for the computed
numerical data of the ratio (1) the a

d(e)
i –coefficients of

Eq. (10) were determined for nS-, nP - and nD-series
in sodium at different temperatures. The subsequent
processing of the numerical data for a

d(e)
i -coefficients re-

sulted in the formation of matrices of the fitting coeffi-
cients b

d(e)
ik of Eq. (12), which are presented below.

4.1. Modification of approximation (10) for nS-states

As S-states may decay or excite only into P -states, it
is possible to make T -independent the coefficients a

d(e)
i

of Eq. (10) by introducing an additional factor ∆d(e)
µ to

the argument of the Planck-distribution exponent

R
d(e)
nl =

a
d(e)
0 + a

d(e)
1 x + a

d(e)
2 x2

v2
[
exp(0.31579∆d(e)

µ x3)− 1
] , (13)

where ∆d(e)
µ is determined by the quantum defects µS and

µP of the S- and P -series of the Rydberg states. Thus,
∆d

µ = µP − µS + 1 for decays and ∆e
µ = µS − µP for

excitations provide a more exact account for the energy
separation between the neighbour nS and nP states with
the energies Enl = −1/[2(n−µl)2]. It was found that for
nS-states the coefficients a

d(e)
i in (12) may be taken con-

stant for T > 100 K, as follows:
ad
0 = 8.5833, ad

1 = −2.8473, ad
2 = 0.2966,

ae
0 = 7.1104, ae

1 = −1.4804, ae
2 = 0.4297.

The values of coefficients ad
0 and ae

0 indicate, for example,
that from rather high nS-levels and temperatures the de-
cay processes (BBR-induced together with spontaneous)
dominate over the BBR-induced excitation, so the lower
P -states are populated rather than the upper states.

4.2. The constants of Eqs. (10) and (12) for nP states

The spontaneous decay rate of P -states is one order
smaller than that of the S-states [5, 14], therefore the
decay and excitation ratios (1) exceed those for the nS-
series by more than one order, and the corresponding co-
efficients b

d(e)
ik have relatively large values (at T = 300 K

Re
nl > 1 already for n = 12 and Rd

nl > 1 for n ≥ 17):

be
ik =




151.130 0.678 −0.329
32.933 −46.668 27.353
−46.653 94.481 −59.850


 ,

bd
ik =




107.636 5.943 −3.972
−83.537 54.087 −34.275
39.861 −26.842 17.897


 .

Here the coefficients bd
00 and be

00 indicate a more rapid
population of upper S- and D-states from the thermal
excitation Rydberg P -states.

4.3. The constants of Eqs. (10) and (12) for nD states

The spontaneous decay rates of D-states almost
coincide with those of the S-states [5, 14]. Therefore,
the ratios (1) for D-states are nearly equivalent to those
of S-states, as it follows from the matrices of coefficients
b
d(e)
ik :

bd
ik =




11.546 0.309 0.101
−11.085 1.948 −0.571
4.311 −1.851 0.577


 ,
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be
ik =




5.232 −0.2667 0.4507
0.1574 −0.1713 −1.277
0.2334 −3.5013 3.0608


 .

5. Conclusions

Comparison of the data given by Eqs. (10) and (12)
with that of the straightforward calculations according
Eqs. (7)–(9) demonstrates high accuracy of the asymp-
totic approximations within 1–2% for the states with n
from 12 up to n = 1000 in the temperature ranges from
T = 100 K up to 10 000 K. The proposed approximation
equations may be derived also for the Rydberg states in
other atoms.
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