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In this paper, the dependence of some important parameters in fiber lasers such as propagation constant,
normalized frequency or V No. and waveguide dispersion with temperature has been investigated analytically. We
showed that the thermal effects cannot be neglected in the above parameters especially in middle and high power
regime.
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1. Introduction

Fiber lasers are under considerable attention due to
their high efficiency and good beam qualities [1–6]. In
high power regimes, the heat generation due to pump
beam [7] can influence the laser operation and beam
propagation characteristics. The heat deposition in end-
-pumped fiber lasers changes the step-index fiber to
graded-index, so the propagation parameters like V num-
bers, propagation constant and dispersion will be var-
ied. In this paper, we consider a fiber laser pumped by
a super-Gaussian profile [8] diode laser which is more re-
alistic profile for high-power and multimode diode lasers
with respect to top hat profile. After solving the heat
conductive equation, the variation of such parameters for
end-pumped Yb-doped fiber laser has been studied.

2. The analytical model

To investigate the variation of propagation parameters
with input power, the temperature distribution in the
fiber must be calculated. We begin by finding the ra-
dial temperature distribution of a fiber whose core and
cladding radii are a and b, respectively. The steady state
heat equation can be written as

∇2T = −Q

k
, (1)

where k and Q = Q0 exp(−2r4/ω4
0) are the medium ther-

mal conductivity and heat power density of the source,
respectively. The length of fiber is much greater than
the diameter, and so is the z derivative. Using the fol-
lowing boundary conditions including the continuity of
the temperature distribution and radial derivatives on
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the boundary means T1|r=a = T2|r=a and dT1
dr |r=a =

dT2
dr |r=a. Moreover, the Newtonians boundary condition
on the surface is dT2

dr |r=b = h
k (TC − T |r=b). The temper-

ature distribution in the core, T1(r), and outside, T2(r)
will be [8]:

T1(r) = − Q
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0 ≤ r ≤ a, (2)

T2(r) = TC − Q
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where T0 is the temperature of the center and is described
as

T0 =
Q
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TC is the coolant temperature, h is the heat convection

(525)
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coefficient and kFl(a1, a2, . . . ak, b1, b2, . . . bl; x) is the hy-
pergeometric function defined by [9]:

kFl (a1, a2, . . . ak, b1, b2, . . . bl; x)

=
∞∑

n=0

(a1)n(a2)n. . . (ak)n

(b1)n(b2)n. . . (bl)n

xn

n!
. (5)

The temperature-dependent change of refractive index
then can be calculated as [10]:

∆n(r) = [T (r)− TC]
dn

dt
. (6)

By substituting Eq. (2) into (6) we see the radial de-
pendence of refractive index. Therefore, the heat induct-
ing will change the step-index fiber to graded-index. This
change of refractive index influences the fiber parameters.
The normalized frequency or V number is [11]:

V =
2πa

λ
n1

√
2(n1 − n2), (7)

where n1 and n2 are the maximum core and cladding
refractive indices, respectively. By the derivation of (6),
the variation of V No. can be found as

∆V =
2πa

λ

[
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where

∆n1 =
dn

dt
(T0 − TC), (9)

∆n2 =
dn

dt
[T (a)− TC] . (10)

In graded-index fiber, the propagation constant, β, and
wave guide dispersion, WD, are as follows [11]:

β =
(

V 2

2a2δ
− 6V

a2

) 1
2

, (11)

WD = − V 2

2πc

d2β

dV 2
, (12)

where δ = −n1−n2
n1

.
So, according to the dependence of V No. on the tem-

perature, the waveguide dispersion and propagation con-
stant will be temperature dependent.

3. Results and discussion

The variations of V No., β and WD with input power
are discussed here. The following parameters are used in
the calculations:

a = 4.6 µm, b = 400 µm, λ = 1.06 µm,

k = 0.0138
W

cm K
, h = 0.001

W
cm2 K

,

TC = 300 K and
dn

dT
= 10−6◦C−1.

Figure 1 shows the variation of V No. with input power.
As seen from this figure, the thermal effect due to the
pump power can change the mode propagation of the
fiber and, approximately, for P > 380 W, V > 2.405.

Fig. 1. The variation of V no. with input power.

Fig. 2. The variation of propagation constant with in-
put power.

Fig. 3. The variation of waveguide dispersion versus
input power.
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The variation of propagation constant with input
power is plotted in Fig. 2. The propagation constant
increases by increasing the input power.

In Fig. 3, the waveguide dispersion versus input power
is plotted. As can be seen, the waveguide dispersion in-
creases with input power.

4. Conclusion

The variation of some important parameters in fibers,
like V no., propagation constant and the waveguide dis-
persion with input power has been discussed. We have
shown that, in middle and high-power regimes, these vari-
ations will be important and cannot be neglected in de-
signing of such lasers.
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