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We study the stability of the continuous waves in the pancake shaped dipolar Bose–Einstein condensate
trapped in the strong optical lattice potential with the coexisting local (the short-range s-wave) interaction
and nonlocal (the dipole–dipole) interactions between the condensate atoms. The system is modeled by two
two-dimensional discrete models derived from the Gross–Pitaevskii equation accounting the dipole–dipole
interactions: discrete nonlinear Schrödinger equation with cubic nonlinearity and nonpolynomial Schrödinger
equation. The corresponding dispersion relations are calculated analytically and the regions of the modulation
instability in the parametric space are summarized into the stability diagrams.
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1. Introduction

The modulation instability (MI) is a general character-
istic of wave propagation in nonlinear dispersive media
and has been studied in diverse fields as fluid dynam-
ics [1], nonlinear optics [2], plasma physics [3], matter
waves [4], etc. It is associated with a process in which
weak perturbations to the steady state increase exponen-
tially as a result of interplay between the nonlinearity and
the group-velocity dispersion. The modulation instabil-
ity is closely related to the localized mode formation,
occurring in the same parameter region where localized
soliton-like structures have been observed.

In this paper we consider MI of the continuous-wave so-
lution (CW) as a precursor for localized soliton-like struc-
tures existence in pancake shaped dipolar Bose–Einstein
condensates (BEC) in a very deep optical lattice [5].
The presence of a deep optical lattice gives possibility
to model the BEC with two discrete versions of the two-
-dimensional Gross–Pitaevskii equation (GPE) account-
ing the dipole–dipole interactions (DD), discrete nonlin-
ear Schrödinger equation (NLSE) with usual cubic non-
linearity [5] and more accurate discrete nonpolynomial
Schrödinger equation (NPSE) [6]. A noteworthy feature
of the discrete NPSE is that it may account for the onset
of collapse which is experimentally found in real 3D BEC
with attractive contact interaction.

The analysis of the modulation instability is presented
for both discrete models and for all combinations of the
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contact and DD interaction types: attractive and repul-
sive contact, isotropic and anisotropic DD interaction.
The corresponding dispersion equations are derived ana-
lytically and regions of the MI are summarized into the
stability diagrams.

2. Modulation instability

Discrete 2D NPSE with dipole–dipole interaction can
be written in the following form:
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where the parameter C is the coupling constant, ℵ = −1
corresponds to the attractive and ℵ = 1 to repulsive con-
tact interaction, Γ is the ratio between the strength of the
dipole–dipole and contact interaction and angle θm′,n′ is
π/2 or 0 for polarization of dipoles along the axial (z)
direction or in the perpendicular plane (we choose polar-
ization along x axis), respectively. In the former case DD
interaction is isotropic and in the later anisotropic. The
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first equation in system (1) is discrete version of the evo-
lution equation for the transverse wave function [6] and
the second equation in system (1) determines the axial
width of the wave function [6]. Equation (1) can be re-
duced to the discrete 2D GPE with cubic nonlinearity in
a low density limit |φm,n| ¿ 1, when the axial width of
the wave function becomes fixed, ηm,n = η = 1. The sta-
tionary CW solution of Eq. (1) has a form φm,n = φe− iµt

where parameter µ is the propagation constant or chem-
ical potential in the context of BEC. Substituting CW
solution in Eq. (1) we obtain the relation between µ and
amplitude φ according to which the CW solutions exist
only for certain range of the parameters µ and Γ satisfy-
ing

φ2 =
µ− (1 + η4)/(2η2)
ℵ/η + ΓΣx0,z0

> 0, η > 0, (2)

where the sums depending on the type of the dipole–
dipole interaction are given with the expressions (5)
or (6).

In order to clarify the problem of the MI of the CW
solution we follow the standard procedure and look for
solutions of Eq. (1) in form φm,n = (φ + δum,n)e− iµt

where δum,n = am,n + ibm,n represents small complex
perturbations which modulate the CW solution. Substi-
tuting perturbed solution into Eq. (1) and linearizing the
resulting equations, we obtain a system of two coupled
linear equations for am,n and bm,n. Looking for solutions
of the perturbation functions in a form of plane waves
∼ exp(Ωt+ ipm+ iqn), where p and q are wave numbers
in lattice directions m and n, we obtain the dispersion
relations.

In the case of the 2D GPE with cubic contact and
dipole–dipole interaction the dispersion relation has a
form
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while the dispersion relation for 2D NPSE model reads
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where parameters υ and α are defined with
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The sums included in Eqs. (2)–(4) for the isotropic DD
interaction are
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while for the anisotropic DD interaction are
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3. Results and discussion

The dispersion relations (3) and (4) enable calculat-
ing the borders of the MI region in the parametric space
(Γ , µ) which correspond to the regions with positive Ω2

indicating exponential growth of the introduced pertur-
bations and MI of the initial CW solution. In these
regions the existence of new localized solutions are ex-
pected. The corresponding stability diagrams are dis-
played in Figs. 1 and 2 for discrete 2D NPSE, with at-
tractive and repulsive contact interaction, respectively.
For any point into the parametric space, the appearance
of Ω2 > 0 at least for one pair of (p, q) was the sufficient
condition to identify MI.

The stability diagrams (Fig. 1) clearly show that the
presence of the DD interactions in the BEC with attrac-
tive contact interaction extends regions of MI and indi-
cates extension of the existence region for the localized
solitary structures. The stability diagrams (Fig. 2) show
that the increase of the intensity of the non-local dipole–
dipole interaction leads to the appearance of the MI re-
gions for BEC with repulsive contact interaction. This
result indicates possibility for existence of the unstag-
gered localized structures in BEC with repulsive contact
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Fig. 1. The 2D NPSE with C = 0.8 and attractive
contact interaction. The gray color stands for the MI
region and white for the region with stable CW solu-
tions. Plot (a) corresponds to the isotropic DD and (b)
to the anisotropic DD interaction.

Fig. 2. The 2D NPSE with C = 0.8 and repulsive con-
tact interaction. The light gray color stands for the MI
region, white for the stable CW and dark gray denotes
the regions where CW solutions cannot exist [the con-
ditions written in relation (2) are not simultaneously
satisfied]. Plot (a) corresponds to the isotropic DD and
(b) to the anisotropic DD interaction.

interaction as were found in literature [7, 8]. In addition,
the results show that the influence of the dipole orien-
tation on the stability of the CW solutions reflects only
to the opening of instability regions for different sets of
system parameters.

Qualitatively the same results considering development
of the MI of the CW solutions are obtained for the pan-
cake BEC modeled by the discrete 2D NLSE with cu-
bic contact (local) and DD (non-local) interaction. Only
the corresponding graphs are shifted with respect to
µ(µgpe ∼ µnpse − 1).

4. Conclusion

The Bose–Einstein condensates with different atomic
species and various trapping geometries are nowadays in
the focus of the researchers of many experimental groups
all over the world. One of the main streamlines is gener-
ation of the localized patterns. In this paper we studied
such system consisting of the pancake BEC with dipolar
atoms in a very deep optical lattice within the framework
of two 2D discrete models: NLSE and NPSE. Both of
them include the same non-local term describing the DD
interaction. The results show that both models produce
qualitatively the same results considering development
of the MI. The presence of the DD interaction of both
types — isotropic and anisotropic — extends the region
of MI in the parametric space for BEC with attractive
contact nonlinearity. Also, the increase of the attractive
DD interaction produces MI for the BEC with a repul-
sive contact interaction. These results indicate that the
DD interaction extends the parameter region of the lo-
calized structures existence in the BAC with attractive
contact interaction, but in the repulsive BEC creates re-
gions of existence of the localized structures which are
not present without support of the strong attractive DD
interaction. The main findings are consistent with the
results presented in literature [5, 7, 8].
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