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We use a finite-difference model that is capable of describing the single state spin dynamics in a double-barrier
AlGaAs heterostructure. The use of Green’s functions enables a description of the double-barrier structure by
a finite matrix while the interaction with contacts is described by appropriate self-energies. To account for
interface roughness scattering, a self-energy ΣIR(E, k) is derived within the random phase approximation. The
dominant part is due to in-plane momentum relaxation while a smaller part describing spin-flip scattering is
neglected. The former only decreases the state lifetime while the latter can also affect the spin precession frequency.
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1. Introduction

The spin-orbit interaction (SOI) in noncentrosymmet-
ric semiconductors provides means for nonmagnetic con-
trol of spin phenomena [1]. The carrier spin responds to
its electrostatic environment as moving electrons see an
effective magnetic field Beff in their reference frame. If
a nonzero average momentum of the carrier ensemble is
accomplished, Beff may be manifested through spin pre-
cession of coherently excited carriers allowing its direct
measurement [2].

We study the spin precession of an electron injected
into the well region of a double-barrier AlGaAs system.
States within the GaAs well are quasi-bound due to the
coupling to the reservoirs behind AlGaAs barriers, i.e.
because there is a finite probability that the electron will
tunnel out. In a finite-difference model, the finite lifetime
due to tunnelling out is described by a self-energy matrix
ΣI(E, k) which enforces the correct boundary conditions
at boundaries between the system of interest and the
reservoirs [3].

2. Finite-difference model

The problem is defined on a grid zn = z0 + na, n =
0,±1,±2,. . . which amounts to using {|zn〉} as the basis
set to describe the electron’s state in the structure, Fig. 1.
The finite-difference model is obtained by approximating
differential operators, e.g. pz, with finite differences and
representing them by matrices

∗ corresponding author; e-mail: elgi@leeds.ac.uk

Fig. 1. A schematic of the problem. The device con-
sists of points z1, z2, . . . , zN. In the finite-difference
scheme, it is described by Hamiltonian H0 which is a
N ×N matrix.

pz |z〉 =
i~
2a

(|z + a〉 − |z − a〉) ,

〈z| pz |z′〉 =
i~
2a

(δz,z′+a − δz,z′−a) . (1)

With k being the in-plane wave vector, the system is
described by the (retarded) Green function [4]

G(E, k) = (E − εk −H + iη)−1
,

εk =
~2k2

2m
, η → 0+. (2)

The infinite matrix G(E, k) can be folded onto a N×N
matrix G0(E, k) by representing the interaction with the
left (L) and right (R) contact by self-energies (kL,R is the
z-component of the wave vector in the contact)

ΣI(E, k) = − ~2

2ma2

[
exp (ikLa) |z1〉

× 〈z1|+ exp (ikRa) |zN〉 〈zN|
]
. (3)

The device Green function is [5]:

G0(E, k) =
[
E − εk −H0 − ΣI (E, k)

]−1
. (4)
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3. Spin–orbit interaction

SOI is included up to first order in k. The spin coor-
dinate is introduced into G0(E, k) by [1]:

G0(E, k) → G0(E, k)⊗ I2, (5)
(Kronecker product with the 2 × 2 unit matrix). The
Dresselhaus and Rashba Hamiltonians are given by

HD = γ (σxkx − σyky)
d2

dz2
,

HR = α (σykx − σxky) , (6)
and are included in the total Hamiltonian through the
SOI self-energy ΣSOI(E, k). This is an exact description
in absence of scattering potentials.

SOI is manifested as the splitting of quasi-bound
states, which are defined as peaks in the local density
of states (LDOS):

LDOS(E, k, z) =
〈z|A(E, k) |z〉

2π
,

A(E, k) = i
(
G0(E, k)−G+

0 (E, k)
)
, (7)

where G+
0 (E, k) (the advanced Green function) is the

Hermitian conjugate of G0(E, k). Numerical calculations
of LDOS in a double-barrier structure are shown in Fig. 2.

Fig. 2. Left part is the LDOS in absence of SOI. Right
part, SOI included. Dark is small, light is large, LDOS
shown in logarithmic scale. Black lines are the two Al-
GaAs barriers, the rest is GaAs. Here k ‖ [11] (maxi-
mum splitting) and εk = 80 meV, γ = 24 eV A3, α =
50 meV while Ez = E − εk.

4. Interface roughness

The self-energy due to interface roughness scattering,
ΣIR, is found using the random phase approximation [6]:

ΣIR(E, k) =
∑
zj

|zj〉 〈zj |NW

Ω
(Wkk′(zj)

+
∑

k′

1
Ω
|Wkk′(zj)|2 〈zj |G0(E, k′) |zj〉

)
. (8)

The sum runs over interface coordinates zj . For |Wkk′(z)|
we take

∣∣Wkk′(z)
∣∣2 = A(z)πΛ2 exp

(
−Λ2 |k − k′|2

4

)
, (9)

and A(z) is nonzero only in the vicinity of the interface

z = zj ± a

2
. (10)

Now, the Green function, GT(E, k) that accounts for
interface roughness scattering is given by

GT(E, k) =
(
G0(E, k)−1 − ΣIR(E, k)

)−1
. (11)

Interface roughness scattering broadens the DOS fea-
tures, as shown in Fig. 3.

Fig. 3. The interface roughness scattering broadens
the quasi-bound states. The density of states (DOS)
is the sum of LDOS over all z. Parameters are the
same as in Fig. 2 and Λ = 10 nm, A = 104 eV2 nm2,
NW/Ω = 10−5 nm−2.

5. Spin precession

Figure 4 shows the numerically calculated temporal
evolution of the initial state. To study the spin dynamics
in the double-barrier structure, we consider the time de-
pendent state |ψk(t)〉 with the initial conditions at t = t0
of being located at zS (halfway between the two barriers)
with spin-up and in-plane wave vector k:

Fig. 4. Probabilities for being in spin-up and spin-
-down state at zS (the midpoint of the GaAs well region)
as a function of time, t0 = 0. Parameters are the same
as in Figs. 2 and 3. Blue, ΣIR = 0, red ΣIR 6= 0. The de-
pendence is oscillatory with an exponentially decaying
envelope due to finite lifetime.

|ψk(t = t0)〉 = |zS ↑ k〉 . (12)
For t > t0 the |ψk(t)〉 state is given by
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|ψk(t)〉 = U(t− t0, k) |ψk(t0)〉 , (13)
where U is the time-evolution operator given by [7]

U(t− t0, k) =
i

2π

∫

E

exp
(
− i

E(t− t0)
~

)

×G(E, k)dE, (14)
and G(E, k) represents G0(E, k) or GT(E, k), depending
on whether interface roughness scattering is included or
not.

The spin precession frequency is independent of ΣIR

because it does not describe splin-flip scattering
(a higher-order effect). Its value is consistent with
the splitting of the lowest quasi-bound doublet shown
in Fig. 3. For t < 0.2 ps, the lines are noisy due to the
finite accuracy of the numerical Fourier transform. Also,
for small times the dynamics is influenced by short-lived
higher quasi-bound states.

6. Conclusion

Numerical calculations show that the spin-dependent
dynamics in a double-barrier structure can be explained
by spin precession of the lowest lying quasi-bound dou-
blet. This is analogous to the case in a quantum well
where spin precession has been used to directly measure
the SOI induced effective magnetic field [2].

A model to account for interface roughness scattering is
described. Its main effect is to broaden the DOS features
due to in-plane momentum relaxation. In the present
model, it does not affect the spin precession frequency.
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