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We use a finite-difference model that is capable of describing the single state spin dynamics in a double-barrier
AlGaAs heterostructure. The use of Green’s functions enables a description of the double-barrier structure by

a finite matrix while the interaction with contacts is described by appropriate self-energies.

To account for

interface roughness scattering, a self-energy Xir(F, k) is derived within the random phase approximation. The
dominant part is due to in-plane momentum relaxation while a smaller part describing spin-flip scattering is
neglected. The former only decreases the state lifetime while the latter can also affect the spin precession frequency.

PACS numbers: 71.70.Ej, 73.20.At, 73.21.Fg

1. Introduction

The spin-orbit interaction (SOI) in noncentrosymmet-
ric semiconductors provides means for nonmagnetic con-
trol of spin phenomena [1]. The carrier spin responds to
its electrostatic environment as moving electrons see an
effective magnetic field Beg in their reference frame. If
a nonzero average momentum of the carrier ensemble is
accomplished, B.g may be manifested through spin pre-
cession of coherently excited carriers allowing its direct
measurement [2].

We study the spin precession of an electron injected
into the well region of a double-barrier AlGaAs system.
States within the GaAs well are quasi-bound due to the
coupling to the reservoirs behind AlGaAs barriers, i.e.
because there is a finite probability that the electron will
tunnel out. In a finite-difference model, the finite lifetime
due to tunnelling out is described by a self-energy matrix
21(E, k) which enforces the correct boundary conditions
at boundaries between the system of interest and the
reservoirs [3].

2. Finite-difference model

The problem is defined on a grid z, = z9 + na, n =
0,+1,+2,... which amounts to using {|z,)} as the basis
set to describe the electron’s state in the structure, Fig. 1.
The finite-difference model is obtained by approximating
differential operators, e.g. p,, with finite differences and
representing them by matrices
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Fig. 1. A schematic of the problem. The device con-
sists of points z1,z2, ..., zx. In the finite-difference
scheme, it is described by Hamiltonian Hy which is a
N x N matrix.

pel2) = o (124 a) — |z~ a).

ih
<Z| Y2 |Z/> = % (6z,z’+a - 5z,z’fa) . (1)
With k being the in-plane wave vector, the system is
described by the (retarded) Green function [4]
G(E,k)=(E —e,— H+in) ",
h2k?
2m’
The infinite matrix G(E, k) can be folded onto a N x N
matrix Go(FE, k) by representing the interaction with the

left (L) and right (R) contact by self-energies (kr, g is the
z-component of the wave vector in the contact)

€k = n—o0t. (2)

h? )
YI(E k) = “Smal [exp (ikra)|21)
x (21| + exp (ikra) |2n) (2n] ] (3)
The device Green function is [5]:
Go(E, k) = [E — e — Ho— 51 (B, k)] . (4)
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3. Spin—orbit interaction

SOI is included up to first order in k. The spin coor-
dinate is introduced into Go(F, k) by [1]:

GO(Evk)_)GO(Eak)(gIZa (5)
(Kronecker product with the 2 x 2 unit matrix). The
Dresselhaus and Rashba Hamiltonians are given by

d2
2

Hgr =« (Uykx - Uzky) ) (6)
and are included in the total Hamiltonian through the
SOI self-energy Xsor(F, k). This is an exact description
in absence of scattering potentials.

SOI is manifested as the splitting of quasi-bound

states, which are defined as peaks in the local density
of states (LDOS):

Hp = v(0gke — oyk

(z| ACE, k) |2)

2m ’
A(Eak) =i (GO(Evk)fGEJF(E7k))7 (7)
where G (E,k) (the advanced Green function) is the

Hermitian conjugate of Go(E, k). Numerical calculations
of LDOS in a double-barrier structure are shown in Fig. 2.
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Fig. 2. Left part is the LDOS in absence of SOI. Right
part, SOI included. Dark is small, light is large, LDOS
shown in logarithmic scale. Black lines are the two Al-
GaAs barriers, the rest is GaAs. Here & || [11] (maxi-
mum splitting) and e = 80 meV, v = 24 eV A® a =
50 meV while F, = F — ¢y,.

4. Interface roughness

The self-energy due to interface roughness scattering,
2R, is found using the random phase approximation [6]:

Z |25) (2 | (Wi (25)

+Z Wi (25)|” <Zj|GO(E7k/)|Zj>>- (8)

The sum runs over interface coordinates z;. For |Wy (2)]
we take

Sir(E, k) =

W ()] = A=) A2 exp (—“’j’“) o

and A(z) is nonzero only in the vicinity of the interface
z=2z+ g. (10)
Now, the Green function, Gp(E, k) that accounts for
interface roughness scattering is given by
Gr(E, k) = (Go(E, k)" — T (E, k)) (11)
Interface roughness scattering broadens the DOS fea-
tures, as shown in Fig. 3.
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Fig. 3. The interface roughness scattering broadens
the quasi-bound states. The density of states (DOS)

is the sum of LDOS over all z. Parameters are the

same as in Fig. 2 and 4 = 10 nm, A = 10* éV? nm?,

Nw/02 =10"" nm~2.

5. Spin precession

Figure 4 shows the numerically calculated temporal
evolution of the initial state. To study the spin dynamics
in the double-barrier structure, we consider the time de-
pendent state |t (t)) with the initial conditions at ¢t = t¢
of being located at zg (halfway between the two barriers)
with spin-up and in-plane wave vector k:

—_— (s 1 K (2)[?
- = = [{zs | Klu(®)?
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Fig. 4. Probabilities for being in spin-up and spin-
-down state at zs (the midpoint of the GaAs well region)
as a function of time, to = 0. Parameters are the same
as in Figs. 2 and 3. Blue, Jig = 0, red Xig # 0. The de-
pendence is oscillatory with an exponentially decaying
envelope due to finite lifetime.

[ (t =to)) = |zs T k). (12)
For t > ty the |¢(t)) state is given by
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[P (t)) = U(t = to, k) [¢r(to)) , (13)

where U is the time-evolution operator given by [7]

Ut~ to,k) = %/Eexp (_E“h—t))

xG(E,k)dE, (14)
and G(E, k) represents Go(E, k) or Gr(E, k), depending
on whether interface roughness scattering is included or
not.

The spin precession frequency is independent of X
because it does not describe splin-flip scattering
(a higher-order effect). Its value is consistent with
the splitting of the lowest quasi-bound doublet shown
in Fig. 3. For t < 0.2 ps, the lines are noisy due to the
finite accuracy of the numerical Fourier transform. Also,
for small times the dynamics is influenced by short-lived
higher quasi-bound states.

6. Conclusion

Numerical calculations show that the spin-dependent
dynamics in a double-barrier structure can be explained
by spin precession of the lowest lying quasi-bound dou-
blet. This is analogous to the case in a quantum well
where spin precession has been used to directly measure
the SOI induced effective magnetic field [2].

A model to account for interface roughness scattering is
described. Its main effect is to broaden the DOS features
due to in-plane momentum relaxation. In the present
model, it does not affect the spin precession frequency.
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