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Hyper-Solitons in Nematic Liquid Crystals
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We study laser light propagation in a cell containing a liquid crystal in the nematic phase. We launch
hyper-Gaussian beams and follow their behavior within the cell, in time and in three spatial dimensions, utilizing
an appropriately developed theoretical model and a numerical procedure based on the fast Fourier transform.
We demonstrate the formation of stable “hyper-soliton” breathers in a narrow region of beam intensities, for
fixed other parameters. Hyper-solitons are similar in appearance and behavior to the usual solitons, formed by
launching the usual Gaussian beams; however noticeable differences persist.
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1. Introduction

Propagation of self-focused beams [1] in nematic liquid
crystals (NLCs) [2] has been the subject of significant in-
terest in recent years [3–9]. NLCs are known to exhibit
enormous optical nonlinearities, due to their large refrac-
tive index anisotropy, coupled with the optically-induced
collective molecular reorientation. We investigate the
propagation of single self-trapped laser beams in NLCs.
Starting from the standard equations describing the non-
local and nonlinear interaction of light and NLC, we de-
velop a numerical procedure that treats these equations
in three spatial dimensions and time. We launch hyper-
Gaussian beams of order 4, and compare the behavior
of the resulting hyper-solitons with the solitons formed
by launching ordinary Gaussian beams. We vary only
a few input beam parameters: the input intensity and
the full width at half maximum (FWHM) of the beam,
and demonstrate the formation of soliton breathers in a
narrow region of beam intensities. We present the opti-
cal field intensity I(0, 0, z) along the propagation axis, in
the middle of the crystal and breathing soliton transverse
profiles at the cell exit (x, y) plane.

2. The model

In the presence of an externally applied (low frequency)
voltage the spatial evolution of a slowly-varying beam
envelope A, linearly polarized along the x axis and prop-
agating along the z axis, the dimensionless paraxial wave
equation [3]:

2i
∂A

∂z
+ ∆x,yA + α

(
sin2 θ − sin2 θ0

)
A = 0, (1)

where ∆x,y is the transverse Laplacian. The temporal
evolution of the angle of reorientation θ is given by the
dimensionless diffusion equation [7, 10, 11]:
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Hard boundary conditions on the molecular orientation
at the transverse borders of the liquid-crystal cell are im-
posed

θ(x = −D/2) = θ(x = D/2) = 2◦. (3)
Here, α = k2

0x
2
0∆εOPT, β = (ε0x

2
0∆εDC|EDC|2)/K, γ is

the viscous coefficient, K is Frank’s elastic constant, τ is
the director relaxation time, k = k0n0 is the wave vector
in the medium, x0 the transverse scaling length, ∆εOPT

is the optical permittivity anisotropy of the liquid-crystal
molecules, ∆εDC is the static permittivity anisotropy of
the liquid-crystal molecules and EDC is the applied field
strength. θ is the overall tilt angle (the total orienta-
tion of the molecules with respect to the z axis), owing
to both light and voltage: θ = θ0 + θ̂, where the angle
θ0 accounts for the molecular orientation induced by the
static electric field only, while the quantity θ̂ corresponds
to the optically induced molecular reorientation.

By solving Eqs. (1) and (2) we describe the beam
propagation in three spatial dimensions and time. We
developed a novel numerical procedure, based on fast
Fourier transform (FFT), utilizing our prior experience
in treating the beam propagation in NLC [5, 12]. The
initial distribution θ0 is determined in the beginning, in-
dependent of the solution of the full system of Eqs. (1)
and (2), using boundary conditions and a successive over-
-relaxation (SOR) algorithm for solving partial differen-
tial equations. This approach gives us a more realistic
physical modeling of the system [13, 14]. We present
here only the results when steady state is reached.

3. Results of numerical simulation

We investigate the behavior of propagating hyper-
-Gaussian beams in a bulk NLC. The effect of the input
intensity variation on the single hyper-Gaussian beam
propagation is presented in Fig. 1. We show the steady-
state beam intensities I(0, y, z) and the angle reorienta-
tion distributions θ̂(0, y, z), as functions of the propaga-
tion distance, for different input beam intensities. For
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smaller intensities self-focusing is too weak to keep the
beam tightly focused, so initially it spreads and then
slightly refocuses (Fig. 1a and 1b). By increasing the
beam intensity (Fig. 1c) a threshold for stable solitonic
propagation is achieved, in the form of hyper-soliton
breathers: the beams preserve their new shape, but their
characteristic width and maximum intensity breathe pe-
riodically as they propagate. For still higher intensities
(Fig. 1d) irregular behavior of the beam is observed.
This behavior is very similar to the behavior of regular
Gaussian solitons, as described in [13, 14].

Fig. 1. Development of hyper-soliton breathers. Beam
propagation along the z-direction is depicted for inten-
sities I(0, y, z) in the middle of the crystal (the first
column) and reorientation angles θ̂(0, y, z) (the sec-
ond column). Input intensities: the first row I =
2×10+11 V2/m2, the second row I = 3.8×10+11 V2/m2,
the third row I = 6 × 10+11 V2/m2, and the fourth
row I = 1 × 10+12 V2/m2. Parameters: ∆εOPT = 0.4,
∆εDC = 14.5, FWHM = 2.5 µm and L = 1.5 mm.

When the same sequence of increasing input in-
tensity simulations is repeated for different input
widths (FWHM), for fixed parameters ∆εOPT = 0.4
and ∆εDC = 14.5, a similar behavior is found. For each
input beam width, appropriate input beam intensity can
be found, needed to establish the existence of a hyper-

soliton breather (Fig. 2a). In Fig. 2a we show the cases
of the hyper-soliton breather propagation, for FWHM =
2.5 µm, 3 µm, and 3.5 µm. For smaller FWHM higher
input intensities are needed for the emergence of breath-
ing solitons. We also note that the changes in FWHM
causes the changes in the period of oscillation.

Fig. 2. (a) Stable hyper-soliton breather propagation
in the z direction: the input beam intensity in the mid-
dle of the crystal is shown for different input FWHM
widths. For each input beam width appropriate input
beam intensity is found for the existence of a breath-
ing soliton. (b) Input intensities of breathing solitons
versus input FWHM widths, for Gaussian and hyper-
Gaussian inputs. Parameters: ∆εOPT = 0.4, ∆εDC =
14.5 and L = 1.5 mm.

Fig. 3. Soliton breathers transverse profiles in the nar-
row region of stability. Beam intensity (a) and opti-
cally induced molecular reorientation (b), for Gaussian
and hyper-Gaussian beams, for different input FWHM.
Note the logarithmic scale for the reorientation angle
profiles. Parameters: ∆εOPT = 0.4, ∆εDC = 14.5
and L = 1.5 mm.

In Fig. 2b we compare the formation of Gaussian and
hyper-Gaussian breathers. We display the input intensi-
ties of breathing solitons as functions of the input widths
(FWHM ranging from 2.5 µm to 3.5 µm), for Gaussian
and for hyper-Gaussian beams, in the soliton formation
region. It is seen that for the hyper-Gaussian beams,
higher input intensities are needed for the formation of
hyper-soliton breathers.

In Fig. 3 we show the transverse profiles of solitons
at the exit (x, y) plane: the intensity and the opti-
cally induced molecular reorientation, for Gaussian and
hyper-Gaussian beams. It is evident that the shapes are
very similar; although it appears that the hyper-solitons
are taller than the usual solitons for the same widths.
This comes about because higher input intensities of the
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Fig. 4. Period of soliton breathers versus input power,
for Gaussian (black symbols) and hyper-Gaussian
beams (grey symbols), for different input FWHM. Pa-
rameters as in Fig. 3.

hyper-Gaussian beams are needed for the formation of
hyper-solitons. The same applies to the reorientation
angle profiles. A comparison between the beam inten-
sity and the reorientation angle distributions shows that
the reorientation angle distribution is always much wider,
owing to strong nonlocality for the given parameters,
[4, 11, 15, 16].

In Fig. 4 we show the period the period of soliton
breathers of the breathing solitons as functions of the
input power, for Gaussian and hyper-Gaussian beams.
One can see that the period decreases as the input power
increases. It appears that the periods for Gaussian
and hyper-Gaussian beams follow the same inverse-power
law, as functions of the input power.

4. Conclusion

In this paper we investigated the propagation of hyper-
Gaussian laser beams in a NLC. We displayed the be-
havior of input hyper-Gaussian beams in time and three
spatial dimensions. We demonstrated the formation
of hyper-soliton breathers and examined the differences
from the usual soliton breathers in NLCs. In particu-
lar, we examined the influence of input intensities and
input FWHM on the formation of soliton breathers. We
found that the typical stable soliton propagation mode
is breathing, be it for the Gaussian or for the hyper-
Gaussian input beams. We determined the period of
breathing solitons and found that the period follows an
inverse power law as a function of the input intensity

Acknowledgments

This study is supported by the Qatar National Re-
search Foundation project NPRP 25-6-7-2 and by the

Ministry of Science and Technological Development of
the Republic of Serbia, under the project OI 141031.

References

[1] Y.S. Kivshar, G.P. Agrawal, Optical Solitons, Aca-
demic Press, San Diego 2003.

[2] I.C. Khoo, Liquid Crystals: Physical Properties
and Nonlinear Optical Phenomena Wiley, New York
1995.

[3] M. Peccianti, C. Conti, G. Assanto, A. De Luca,
C. Umeton, J. Nonlin. Opt. Phys. Mater. 12, 525
(2003).

[4] J.F. Henninot, M. Debailleul, M. Warenghem, Mol.
Cryst. Liq. Cryst. 375, 631 (2002).

[5] G. Assanto, M. Peccianti, K.A. Brzdąkiewicz, J. Non-
lin. Opt. Phys. Mater. 12, 123 (2003).

[6] G. D’Alessandro, A.A. Wheeler, Phys. Rev. A 67,
023816 (2003).

[7] X. Hutsebaut, C. Cambournac, M. Haelterman,
J. Beeckman, K. Neyts, J. Opt. Soc. Am. B 22, 1424
(2005).

[8] A.I. Strinić, D.V. Timotijević, D. Arsenović,
M.S. Petrović, M.R. Belic, Opt. Express 13, 493
(2005).

[9] P.D. Rasmussen, O. Bang, W. Krolikowski, Phys.
Rev. E 72, 066611 (2005).

[10] J. Beeckman, K. Neyts, X. Hutsebaut, C. Cam-
bournac, M. Haelterman, Opt. Express 12, 1011
(2004).

[11] J. Beeckman, K. Neyts, X. Hutsebaut, C. Cam-
bournac, M. Haelterman, IEEE J. Quantum Electron.
41, 735 (2005).

[12] A. Strinić, D. Jović, M. Petrović, D. Timotijević,
N. Aleksić, M. Belić, Opt. Express 14, 12310 (2006).

[13] A.I. Strinic, M.R. Belic, Acta Phys. Pol. A 112, 877
(2007).

[14] A. Strinić, M. Petrović, D. Timotijević, N. Aleksić,
M. Belić, Opt. Express 17, 11698 (2009).

[15] M. Peccianti, C. Conti, G. Assanto, , A. De Luca,
C. Umeton, J. Nonlin. Opt. Phys. Mater. 12, 525
(2003).

[16] J.F. Henninot, J.F. Blach, M. Warenghem, J. Opt. A,
Pure Appl. Opt. 10, 085704 (2008).


