
Vol. 116 (2009) ACTA PHYSICA POLONICA A No. 4

Proceedings of the International School and Conference on Photonics, PHOTONICA09

Counterpropagating Matter Waves in Optical Lattices
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An investigation of Bose–Einstein condensate in two-dimensional optical lattice potentials, formed by laser
beams, is carried out. We are interested in the dynamics of Bose–Einstein condensate in a square optical lattice,
where the periodic potential can lead to the stabilization of an otherwise unstable Bose–Einstein condensate. The
behavior of Bose–Einstein condensate in optical lattices is described by the nonlinear Gross–Pitaevskii equation,
which we treat numerically. By applying the Petviashvili iteration method, we demonstrate the existence of
solitonic solutions in the case of counterpropagating matter waves, and analyze their stability.
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1. Introduction

In a dilute boson gas at sufficiently low temperatures,
particles can condense and, in this way, form a Bose–
Einstein condensate (BEC). Since 1995, when this phe-
nomenon was first observed [1, 2], BECs have gained
much attention, due to the fact that these condensates
can be precisely manipulated in experiment [3, 4]. On
the other hand, properties of BECs show similarities with
the physical systems studied in other branches of physics,
such as nonlinear (NL) optics and NL wave theory. Sim-
ilarities between these theories manifest themselves in
dynamical equations used to describe the corresponding
physical systems. More concretely, these theories share
as their determining part the general NL Schrödinger
equation (NLSE). In literature, there are several forms
of NLSEs, and what they have in common is the term rep-
resenting the nonlinearity. Within the mean-field model,
the evolution of BECs is, in a pretty accurate way, de-
scribed by the Gross–Pitaevskii equation (GPE). The NL
term in this partial differential equation reflects the in-
teratomic interaction in a diluted cold gas.

The investigation of BEC in two-dimensional (2D) po-
tentials, formed by laser beams, has attracted much at-
tention in the past few years [5–11]. Here, we are inter-
ested in the dynamics of BEC in an optical lattice, since
the periodic potential can lead to the stabilization of an
otherwise unstable BEC. We treat GPE numerically, by
utilizing the Petviashvili iteration method (PIM) [13] to
find localized solutions, and by propagating the solutions
to check their stability.

2. The model

We study the interaction of two counterpropagating
(CP) condensates that are initially confined to the so-
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-called pancake shape [8, 12] and propagate head-on
along the square optical lattice. In this manner we nu-
merically consider the evolution of two BECs for which
it is possible to take separated wave functions. The
propagation of the forward (F ) and the backward (B)
BEC takes place in the longitudinal z direction, while
we study the intensity and the phase in the transverse
(x, y) plane. To this end, we employ the nonlinearly cou-
pled 3D GPEs [12]. Finally, let us remark again that we
seek the solutions of GPEs by utilizing PIM, and then we
check the stability of such solitons by propagating them
inside the lattice.

For the two CP components BEC, formed by the for-
ward (F ) and the backward (B) matter wave, we start
from the dimensionless coupled GPEs

− i∂zF = ∆F − V F − IF, (1)

i∂zB = ∆B − V B − IB, (2)
where

I = |F |2 + |B|2 (3)
is the total intensity, and F and B are the forward and
the backward wave functions. The external potential
V (x, y) is originating from the optical lattice and is given
by the formula

V = V0 sin2
[
π(x + y)/d

√
2
]
sin2

[
π(x− y)/d

√
2
]
, (4)

where the potential depth V0 is measured in units of the
lattice recoil energy Er = ~2π2/(2md2), d is the lattice
period and m is the mass of the particles constituting
BEC. In this treatment we neglect the external parabolic
trapping potential, usually present in GPE, and concen-
trate on the influence of the optical lattice potential. We
also assume an incoherent interaction between the two
BEC clouds.

We are interested in the localized, solitonic solutions
of Eqs. (1) and (2). Owing to their symmetry, the above
equations suggest the existence of a fundamental vector
soliton solution, of the form
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F = u cos θe− iµz, (5)

B = u sin θe iµz, (6)
where θ is an arbitrary projection angle (here θ = π/4),
and µ is the chemical potential, or the propagation con-
stant. Upon substituting these solutions into Eqs. (1)
and (2), they transform into one, degenerate equation

∆u + (µ− V )u = uI. (7)
The solitonic solutions are found in this equation, using
PIM [13]. The method itself just locates the solutions,
with no regards to their stability. Of course, after finding
the solitonic solutions, one should separately investigate
their stability, e.g., by following their evolution according
to the full system of Eqs. (1), (2). Here we will determine
different classes of spatial vector solitons, and observe
their stability.

3. Numerical results

For the chemical potential within the first gap, and for
different topological charges (TCs) of the input waves,
we found on-site and off-site solutions. An on-site vortex
wave is positioned so that its center coincides with one of
the lattice sites. An off-site vortex is positioned between
the lattice sites. In Fig. 1 we show the intensity and phase
distributions for the off-site (the first row) and the on-site
(the second row) solitonic solutions, for fixed chemical
potential µ = 5 and for different topological charges. It
is seen that both types of solitons are fragmented and
strongly pinned to the lattice sites. As one moves around
the vortex, its phase jumps for 2π times TC, as it should,
but in a number of discrete steps.

Fig. 1. Intensity and phase distributions of the off-site
(the first row) and the on-site (the second row) solitonic
solutions. The first column presents the intensity dis-
tributions, the remaining three the phase distributions,
for different TCs. Parameters: µ = 5, V0 = 2 and the
input topological charges TC = 1, 2, 3, respectively.

Mutual interaction of the two CP BECs as they propa-
gate, represented by the numerical solution of the above
coupled GPEs, is depicted in Fig. 2 (for the input off-
-site CP solitons) and in Fig. 3 (for the input on-site CP
solitons).

Numerical studies of the evolution of two CP soli-
tonic solutions show how the two condensates influence
each others during propagation. It is evident that for

Fig. 2. Interaction of the off-site CP solitons (corre-
sponding to Fig. 1, the first row) with TC = 1 during
propagation.

Fig. 3. Interaction of the on-site CP solitons (corre-
sponding to Fig. 1, the second row) with TC = 1 during
propagation.

the chosen parameters they remain stable, but breathe
slightly during propagation, forming the so-called soliton
breathers.

4. Conclusion

We investigated the interactions of two-component
BECs when illuminated by laser beams that form opti-
cal lattices, producing periodic external potentials. The
behavior of BEC in an optical lattice is well described
by the system of nonlinear Gross–Pitaevskii equations,
which we solved numerically. By applying the Petvi-
ashvili iteration method, we investigated the existence
of solitonic solutions in the case of counterpropagating
matter waves, and analyzed their stability during prop-
agation. We have displayed how the counterpropagating
BECs evolve due to their mutual interaction and form
stable breathing localized solutions, pinned by the lattice.
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