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Geometric Phase of an Open System
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Quantum state diffusion unraveling of the Linblad master equation is utilized to define a geometric phase
of an open quantum system. It is then shown that such geometric phase is invariant under unitary symmetry
transformations of the Linblad equation, which is important property not shared by the geometric phases based
on other types of unraveling.
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1. Introduction

State vectors |ψ〉 of a quantum system are normalized
and the overall phase α in e iα|ψ〉 has no physical rele-
vance. Nevertheless, two vectors on an orbit of the evo-
lution governed by the Schrödinger equation can have
nonzero relative phase αtot = arg〈ψ(0)|ψ(t)〉 which is
measurable. It was Berry [1] who first realized that the
total relative phase αtot can be represented as a sum of
the dynamical part that depends explicitly on the Hamil-
tonian and the part which is of a geometric origin. Berry
considered evolution with Hamiltonian Ĥ(R(t)) depend-
ing on adiabatically and periodically changing parame-
ters R, and was able to show that a part of the total
phase acquired by the systems state vector during one
period of R(t) depends only on the geometric properties
of the curve R(t) in the parameter space [1, 2]. It was
soon realized that there is a whole class of such geomet-
ric phases that appear responsible for important physical
effects [3]. In particular, the geometric phase was defined
for curves in the space of pure states that did not rely on
the adiabatic [4] or cyclic evolution [5, 6]. It became clear
that these geometric phases are always related to the ge-
ometry of the system evolution in the state space PH,
which has a nonzero curvature in the natural connection
determined by the Hilbert space scalar product [2, 5, 7].
It is no surprise that the quantum information processing
revolution brought the idea that the geometric phase can
be used for quantum computing, which has been termed
geometric or, more generally, holonomic computing (see
for example [8]).

However, realistic quantum systems must be treated as
open systems, i.e. together with their environment. The
state of an open system is in general not pure and is de-
scribed by a density matrix. Evolution of open quantum
systems is necessarily described in terms of transforma-
tions of the density matrices even if the initial state is
pure. There have been several attempts to define the ge-
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ometric phase for mixed states of an open systems (see
for example [9–15]). Most of them explore the represen-
tation of the mixed state of the open system in terms of
a collection of pure states of the open system or in terms
of reduction of a pure state of a larger isolated system.
For example, the quantum jumps unraveling of the Lin-
blad master equation for the evolution of the mixed state
ρ̂(t), was used in [13] to define the geometric phase us-
ing the pure states that appear in the unraveling. How-
ever, often the stochastic dynamics of the pure states,
that simulate the master equation for the mixed state,
is not invariant under the transformations that are the
symmetry of the mixed state master equation. Then the
geometric phase defined using the pure states is not in-
variant under the symmetry transformations of the mas-
ter equation, which cannot be considered as satisfactory.
This fact was pointed out in [16]. However, there is a
stochastic unraveling of the master equation in terms of
pure state stochastic evolution, given by the quantum
state diffusion (QSD) theory [17], which has the same
symmetry as the master equation. The QSD stochastic
evolution for pure states of the open system is uniquely
defined given the mixed state master equation, and we
shall show that it can be used to uniquely associate a
geometric phase with the mixed state evolution.

2. Geometric phase

In the sequel we consider open quantum systems that
satisfy Markov property. The most general continu-
ous evolution of such a system is given by the Gorini–
Kossakowski–Linblad master equation (LME) [18] for the
density matrix ρ̂(t):

dρ̂(t)
dt

= − i [Ĥ, ρ̂]

+
∑
m

(
2L̂mρ̂L̂†m − L̂†mL̂mρ̂− ρ̂L̂†mL̂m

)
, (1)

where Ĥ generates unitary evolution and the Linblad op-
erators L̂m describe the non-unitary influences of the en-
vironment. The LME (1) is invariant under the unitary
transformations of the Linblad operators
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L̂m →
∑

k

umkL̂k,
∑
m

umku∗mk′ = δkk′ , (2)

where ∗ denotes complex conjugation of the complex
numbers umk. Consequently, an observable quantity re-
lated to an orbit ρ̂(t), t ∈ (t0, t1) must not depend on
umk. However, it was pointed out in Ref. [16] that the
definitions of the geometric phase based on stochastic un-
raveling of using particular stochastic Schrödinger equa-
tion with real Wiener noise or the quantum jumps ap-
proach are not invariant on the transformations of the
type L̂m → e iαL̂m which are the symmetries of LME.

The idea to analyze the deterministic mixed state evo-
lution by an equivalent random evolution of pure states
is known as the quantum trajectory approach to open
system dynamics, and is also called unraveling of the
master equation [18]. The advantages of the descrip-
tion in terms of random pure states over the description
by density matrix ρ̂ are twofold. The computations are
much more practical, as soon as the size of the Hilbert
space is moderate or large [18]. On the theoretical side,
the stochastic evolution of pure states provides valuable
insights which cannot be inferred from the density ma-
trix approach [17–21]. Non-uniqueness of the represen-
tation of the mixed state in terms of pure states implies
that there are several different types of unraveling which
provide different insights into the dynamics of the open
system.

We shall exploit the fact that QSD equation is the
unique unraveling of (1) which has the same invariance
as (1) under the unitary transformations of the environ-
ment operators [17]. The linear form of QSD equation is
given by the following formula:

|dϕ〉 =

[
− iĤ dt−

∑
m

L̂†mL̂m dt +
∑
m

L̂mdwm

]

×|ϕ(t)〉, (3)
where wm are complex Wiener processes satisfying

EQ[dwm] = EQ[dwm dwm′ ] = 0,

EQ[dwm dw∗m′ ] = 2δm,m′ dt. (4)
EQ[·] denotes the expectation with respect to the stochas-
tic process. The stochastic process with increment |dϕ〉
given by (3) satisfies the unraveling property

Tr
[
ρ̂(t)Â

]
= EQ

[〈ϕ(t)|Â|ϕ(t)〉], (5)
for any operator Â and for all times t. Equation (3) is
linear and does not preserve the norm of wave function.
There exists a nonlinear norm preserving form of QSD
equation which is more convenient for efficient simula-
tions of open system dynamics. However, we shall use,
in a crucial way, the linear form of the QSD theory.

It can be easily seen that the stochastic process is in-
variant under the transformation. In fact, the substi-
tution of (2) leads to the same equation with dw′m =∑

k ukm dwk and dw∗
′

m =
∑

k u∗km dw∗k instead of dwm

and dw∗m, but these have the same stochastic properties.

Let us consider an orbit ρ̂(t), t ∈ (t0, t1) of (1). The
initial mixed state is a convex combination of pure state
projectors ρ̂(t0) =

∑
k pk|ϕk

0〉〈ϕk
0 |. Starting from ini-

tial condition ϕk
w(t0) = ϕk

0 each of the pure states is
evolved stochastically through the space of pure states
using Eq. (3) resulting in|ϕk

w(t)〉, where subscript w cor-
responds to the sample paths of (3). Deterministic evo-
lution through mixed states by (1) from the initial pure
state |ϕk

0〉〈ϕk
0 | gives the curve ρ̂k(t) which is equal to

EQ[|ϕk
w(t)〉〈ϕk

w(t)|], t ∈ (t0, t1). Physical motivation
based on the interferometric approach, elaborated in [16],
requires the total phase to be defined using the linear
QSD equation as follows:

αk
tot(t) = arg EQ

[〈ϕk
w(t0)|ϕk

w(t)〉] . (6)
The dynamical phase related to the curve ρ̂k(t) can be
defined as

αk
dyn(t) = Im

∫ t

t0

EQ

[〈ϕk
w(s)|dϕk

w(s)〉] . (7)

The phases (6) and (7) are well defined and uniquely
associated with the curve of mixed states ρ̂k(t), as will
be presently demonstrated and illustrated with examples.
Finally, the geometric phase of the curve ρ̂k(t) is uniquely
defined as the difference of the total and the dynamical
phases

αk
g(t) = αk

tot(t)− αk
dyn(t). (8)

This completes the definition of the phases in the case of
pure initial states.

Let us briefly demonstrate that the phases (6) and (7)
are invariant under the transformations. The expression
〈ϕ|dϕ〉 after substitution of (2) into (3) and using the
properties of umk becomes

〈ϕ|dϕ〉 = − i〈Ĥ〉ϕ dt−
∑

k

〈L̂†kL̂k〉ϕ dt

+
∑

k

〈L̂k〉ϕ dw′k, (9)

where 〈·〉ϕ denotes the quantum expectation in the state
|ϕ(t)〉. Notice that, due to the unitarity of umk, the
stochastic increments dw′k in (9) satisfy the same proper-
ties as dwk and thus generate the same stochastic process
|ϕk

w(t)〉. From the invariance of 〈ϕ|dϕ〉 follows the invari-
ance of the dynamical phase along an orbit ρ̂k(t) of (1).
In a similar manner, it is obvious that the total phase is
also invariant because the same stochastic process |ϕk

w(t)〉
is generated. Furthermore, the imaginary part of (7) is
always equal to−〈Ĥ〉ϕ dt. Using the unraveling property
(5) we get simple expression of dynamical phase

αk
dyn(t) = −

∫ t

t0

Tr
[
ρ̂k(s)Ĥ

]
ds. (10)

Let us note that the dynamical phase depends on the en-
vironment only through the evolution of the state. Thus,
the geometric phase is well defined and uniquely associ-
ated with the orbit ρ̂k(t) of the LME.
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