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A free photon Hamiltonian is linearized using Pauli’s matrices. Based on the correspondence of Pauli’s
matrices kinematics and the kinematics of spin operators, it has been proved that a free photon integral of motion
is a sum of orbital momentum and spin momentum for a half-one spin. Linearized Hamiltonian represents a
bilinear form of products of spin and momentum operators. Unitary transformation of this form results in an
equivalent Hamiltonian, which has been analyzed by the method of Green’s functions. The evaluated Green
function has given possibility for interpretation of photon reflection as a transformation of photon to antiphoton
with energy change equal to double energy of photon and for spin change equal to Dirac’s constant. Since photon
is relativistic quantum object the exact determining of its characteristics is impossible. It is the reason for series
of experimental works in which photon orbital momentum, which is not integral of motion, was investigated. The
exposed theory was compared to the mentioned experiments and in some elements the satisfactory agreement was
found.

PACS numbers: 14.70.Bh, 33.60.+q, 42.50.Ar, 42.50.Dr

1. Introduction

The fact that photon Hamiltonian is not a linear oper-
ator has a set of consequences that have not been stud-
ied sufficiently so far. The main reason is that photon
characteristics have been mainly examined by means of
Klein–Gordon’s equation [1], which represents eigenprob-
lem of photon Hamiltonian square.

In this paper we shall linearize photon Hamiltonian
and examine some of photon characteristics which follow
from linearized Hamiltonian. The analogy with Dirac’s
approach to the problem of electrons will be used [2].
In the first part of the paper integrals of motion of free
photon will be examined and it will be shown that the
orbital angular momentum of photon is not the integral
of motion. It will be shown that the integral of motion
is total angular momentum being the sum of orbital one
and spin momentum. The unitary transformation of lin-
earized photon Hamiltonian, which leads to equivalent
Hamiltonian suitable for application the Green functions
method, will be made in the second part of the paper.

The discussion of obtained results and their compari-
son to the experimental data will be done at concluding
part.
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2. Linearized photon Hamiltonian

Free photon energy is proportional to square root of
the sum of the momentum components squares. If we
use quantum expression approach instead of classic one,
photon Hamiltonian takes the following form:

Ĥ = ±c
√

p̂2
x + p̂2

y + p̂2
z, (2.1)

where p̂j = − i~ ∂
∂xj

; j = (x, y, z), are the operators of
photon momentum components and c is velocity of light.
This Hamiltonian resembles free electron Hamiltonian.
The difference is that photon rest mass is equal to zero,
so there is no fourth component of momentum as in the
case of an electron. The main problem of quantum pho-
ton theory is the fact that Hamiltonian (2.1) is not a
linear operator and this is in contradiction with the su-
perposition principle.

This problem was first solved by Klein and Gordon,
who considered the eigenproblem of its square, instead
of eigenproblem of Hamiltonian (2.1). The Klein–Gordon
eigenproblem was

Ĥ2Ψ = E2Ψ . (2.2)
It is obvious from (2.1) that Ĥ2 is a linear operator, so
the main problem has been overcome in this way. Equa-
tion (2.2) is called Klein–Gordon’s equation and it is still
used for photons. The only problem related to Klein–
Gordon’s equation is the appearance of negative state
probabilities. It has been shown [3], however, that nega-
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tive probabilities do not appear for particles and quasi-
-particles with zero spin and with integer spin, so this
is why Klein–Gordon’s approach has been maintained in
free photon theory.

The second possible approach is analogous to Dirac’s
approach to a free electron problem [2]. Hamiltonian is
linearized by converting a sum of squares into a square
of a sum. In case of Hamiltonian (2.1) this procedure is
formulated by the following equation:

p̂2
x + p̂2

y + p̂2
z =

(
α̂p̂x + β̂p̂y + χ̂p̂z

)2

, (2.3)

where α̂, β̂ and χ̂ cannot be ordinary numbers or func-
tions, since (2.3) cannot be fulfilled then. The condi-
tions under which (2.3) would be fulfilled, are as follows:
α̂2 = β̂2 = χ̂2 = 1; α̂β̂ + β̂α̂ = 0; α̂χ̂ + χ̂α̂ = 0;
β̂χ̂ + χ̂β̂ = 0. It can be easily concluded that 2 × 2
matrices

α̂ =

(
0 1
1 0

)
, β̂ =

[
0 − i
i 0

]
,

χ̂ =

(
1 0
0 −1

)
, (2.4)

fulfill above conditions. These matrices are known in lit-
erature as Pauli’s matrices [1, 2, 4]. From this, photon
Hamiltonian becomes a linear operator but given in the
form of 2× 2 matrix, i.e.

Ĥ = ±c

(
p̂z p̂x − i p̂y

p̂x + i p̂y −p̂z

)
. (2.5)

The fact that Hamiltonian is 2 × 2 square matrix re-
quires two-component photon eigenstates in the form of
rows and columns. In addition to this, every operator
included in calculation with photon Hamiltonian (2.5)
must be represented as 2× 2 diagonal matrix. Now, the
eigenproblem of Hamiltonian is written down as

±c

(
p̂z p̂x − i p̂y

p̂x + i p̂y −p̂z

) (
Ψ1

Ψ2

)

= E

(
Ψ1

Ψ2

)
. (2.6)

3. Photon’s integrals of motion

We shall not deal with this eigenproblem in further.
Instead of this we shall look for integrals of motion, i.e.
those operators that commute with Hamiltonian (2.5).
It is obvious that any function depending on momentum
components represents an integral of motion, but this
fact is not of physical interest.

It is of particular importance whether orbital angular
momentum

L̂ ≡
(

L̂ 0
0 L̂

)
, L̂ = r × p̂ (3.1)

is photon integral of motion, since in non-relativistic
quantum mechanics operator L̂ is integral of motion of

electron [4]. If we use commutation relations for com-
ponents of radius vector and the components of angular
momentum: [xi, p̂j ] = i~δij ; i, j ∈ (x, y, z) and look for
commutators of orbital angular momentum components
with Hamiltonian (2.5), we come to the following rela-
tions:[

L̂x, Ĥ
]

= ± i~c
(
p̂zβ̂ − p̂yχ̂

)
,

[
L̂y, Ĥ

]
= ± i~c (p̂xχ̂− p̂zα̂) ,

[
L̂z, Ĥ

]
= ± i~c

(
p̂yα̂− p̂xβ̂

)
, (3.2)

based on which it follows that orbital angular momen-
tum is not a free photon integral of motion. It should be
pointed out that signs in (3.2) are obtained on the ba-
sis of obvious symmetry properties Ĥ(−r) = Ĥ(r) and
L(−r) = L(r), where r is radius vector. In order to find
some rotation characteristics that commute with a free
photon Hamiltonian, we shall first show that commuta-
tion relations for matrices α̂, β̂ and χ̂ are: [α̂, β̂] = 2i χ̂;
[χ̂, α̂] = 2i β̂; [β̂, χ̂] = 2i α̂. Very similar to these rela-
tions are the commutation relations for spin components:
[Ŝx, Ŝy] = i~Ŝz; [Ŝz, Ŝx] = i~Ŝy; [Ŝy, Ŝz] = i~Ŝx. Com-
paring this we can establish the correspodence between
spin operators and Pauli’s matrices

Ŝx =
~
2
α̂, Ŝy =

~
2
β̂, Ŝz =

~
2
χ̂. (3.3)

We shall now look for a commutator of component Ĵx

of total momentum with photon Hamiltonian, i.e. with
Ĥ(r). Using upper signs in formulae (3.2) we obtain[

Ĵx, Ĥ(r)
]

=
[
(L̂x + Ŝx), Ĥ(r)

]

=
[(

L̂x +
~
2
α̂

)
, Ĥ(r)

]
= i~c

(
p̂zβ̂ − p̂yχ̂

)

+
~
2
(−2ic)

(
p̂zβ̂ − p̂yχ̂

)
= 0. (3.4)

For lower signs in formulae (3.2) — this corresponds to
negative photon energies, i.e. corresponds to Ĥ(−r), we
have [Ĵx, Ĥ(−r)] = 0. It can be proved, in the same
manner, that both y and z components of total momen-
tum Ĵ = L̂ + Ŝ commute with photon Hamiltonian (the
expression (2.5) with sign +, i.e. Ĥ(r), will be called
photon Hamiltonian). In the same time, the expression
(2.5) with sign –, i.e. Ĥ(−r), will be called antiphoton
Hamiltonian. The final conclusion is the following: total
angular momentum L̂ + Ŝ is the integral of motion for
photon. Up to now we have the proof that total angular
momentum L̂ + Ŝ is free photon integral of motion, for
arbitrary spin.

In nonrelativistic quantum mechanic the conclusion
that Ĵ is integral of motion would mean that energy and
total momentum of the quantum object can be measured
simultaneously and exactly. Since photon is relativistic
object [5] the maximal exactness of measuring of photon
momentum is given by ∆p∆t ∼ ~/c, and consequently



Photon’s Structure of Motion 473

energy and total momentum can be determined with an
error of the order ∆E∆t ∼ ~. The orbital angular mo-
mentum L̂, as it follows from (3.2), is not the integral of
motion, but for relativistic object this fact is not essen-
tial, since for relativistic object absolutely exact deter-
mining of physical characteristics is impossible.

Considering the correspondence (3.3), photon Hamil-
tonian which is given by Ĥ = c(α̂p̂x + β̂p̂y + χ̂p̂z) can
be expressed by means of spin operators in the following
form:

Ĥ =
2c

~

(
Ŝxp̂x + Ŝyp̂y + Ŝz p̂z

)
. (3.5)

The obtained form of photon Hamiltonian, which in-
cludes operators of translation moment P̂ and spin Ŝ
suggests that a free photon has wealthy internal dynam-
ics that consists of mutual action of its translation and
spin characteristics. This “internal life” will be examined
further in the paper.

4. Unitary transformation
of photon Hamiltonian

Photon Hamiltonian (3.5) represents bilinear form in
which photon momentum operators are multiplied by
spin operators. Since momentum characterizes transla-
tion motion of photons, and spin characterizes rotation, it
is obvious that the internal dynamic structure of a pho-
ton is determined by both its translation and rotation
characteristics, and that their interaction — considering
the form of Hamiltonian (3.10), leads to hybridization of
excitations [6].

Spin operators in (3.5) correspond to spin S = 1/2.
Spin operators can then be represented by Pauli’s oper-
ators in the following manner [7]:

Ŝx − i Ŝy = ~P+, Ŝx + i Ŝy = ~P,

1
2
− Ŝz = ~P+P. (4.1)

On the other hand, Pauli’s operators fulfill following com-
mutation relations:[

Pi, P
+
j

]
=

[
1− 2P+

i Pj

]
δij ,

[Pi, Pj ] =
[
P+

i , P+
j

]
= 0,

P 2
i = P+2

i = 0,
(
P+P

)
e.v

=

{
0,

1.
(4.2)

After substitution of (4.1) in (3.7) (where sign + is
retained), we obtain the following Hamiltonian:

Ĥ = cp̂z + c[(p̂x − i p̂y)P + (p̂x + i p̂y)P+

−2p̂zP
+P ]. (4.3)

This conversion to Pauli operators has been made be-
cause the physical picture of processes is clearer through
creation and annihilation operators of excitation.

Operators of moments are linear in operators of cre-
ation and annihilation of photon: P ∼ A + A+, so it can

easily be concluded that mean value of photon Hamil-
tonian over states 1

n! (A
+)nP+|0〉 is equal to zero. This

means that the method of theory of perturbation would
be inappropriate for Hamiltonian (4.3) analysis. This is
why we would make unitary transformation of photon
Hamiltonian with the goal to bring it into the form more
suitable for calculation than the form (4.3), i.e. we shall
go to equivalent Hamiltonian given by

Ĥeq = eŴ Ĥ e−Ŵ ,

Ŵ = ikr + ρ(P − P+) + iλP+P, (4.4)
where ρ and λ are real parameters. Equivalent Hamilto-
nian is found using Weil’s identity [8]:

eŴ D̂e−Ŵ

=
∞∑

n=0

(1)n

n!

[
Ŵ ,

[
Ŵ , . . .

[
Ŵ , . . .

[
Ŵ , D̂

]]
. . .

]

︸ ︷︷ ︸
n−times

. (4.5)

It includes the terms of the following type: P + P+,
P − P+ and P+P . Undetermined parameter λ has been
determined so that the term proportional to P −P+ dis-
appears from equivalent Hamiltonian. The final result of
the described procedure is as follows:

Ĥeq = E0 + Ĥ + ĤS, E0 = ~c(kx sin 2ρ + kz cos 2ρ),

ĤS = −g(P + P+) + 2aP+P, (4.6)

g = ~c
√

k2
y + k2

x cos2 2ρ + k2
z sin2 2ρ− kxkz sin 4ρ,

a = ~c(kx sin 2ρ + kz cos 2ρ). (4.7)
In the further we shall analyze free photon behavior

using method of Green’s functions [7–10]. It is impor-
tant that Hamiltonian E0 is irrelevant in Green’s func-
tion techniques. Besides of this, the starting Hamiltonian
Ĥ, as we have already concluded earlier, has zero mean
value over states 1

n! (A
+)nP+|0〉. This is why we shall

exclude it from calculations. The analysis of photon in-
ternal processes will be made with Hamiltonian ĤS.

5. Photon’s ordering

Since Pauli’s operators figure in ĤS Hamiltonian with-
out various configuration indices, the analysis of spin pro-
cesses in a free photon will be made by means of anti-
commutator’s Pauli’s Green’s function

Γ (t) =
〈〈

P (t)|P+(0)
〉〉

= Θ(t)
〈
P (t)P+(0) + P+(0)P (t)

〉
, (5.1)

where Θ(t) is Heaviside’s step-function [7–9]. Correla-
tor of anticommutator’s Pauli’s Green’s function contains
mean value of anticommutator of Pauli’s operator of the
same configuration index, and according to (4.2) it is
equal to one. This fact simplifies evaluation of mean val-
ues by means of spectral intensity of Green’s function.
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Differentiating Γ (t) with respect to time and using equa-
tion of motion for operator P , we come to

i~
dΓ (t)

dt
= i~δ(t) + 2aΓ (t) + 2g∆(t). (5.2)

The Green functions of the type: 〈〈const|P+〉〉 are equal
to zero. The function ∆(t) is given by

∆(t) =
〈〈

P+(t)P (t)|P+(0)
〉〉

. (5.3)
Using the same procedure, for function ∆(t) we obtain
the following equation:

i~
d∆(t)

dt
= gΓ (t)− gF (t), F (t) = 〈〈P+(t)|P+(0)〉〉

→ i~
dF (t)

dt
= −2g∆(t)− 2aF (t). (5.4)

In differential equations (5.2) and (5.4), Fur-
rier transformations time-frequency are then made:
f(t) =

∫ +∞
−∞ dte− iωtf(ω), f ≡ (Γ ,∆, F ), δ(t) =

1
2π

∫ +∞
−∞ dte− iωt, so we obtain the system of three al-

gebraic equations

(E − 2a)Γ (ω)− 2g∆(ω) =
i~
2π

,

∆(ω) = g [Γ (ω)− F (ω)] ,

EF (ω) = −2 [g∆(ω) + aF (ω)] . (5.5)
Solving this system of equations, we find that

Γ (ω) =
i~
2π

E2 + 2aE − 2g2

(E2 − E2
0)2

,

E0 = 2
√

a2 + g2 = 2~ck. (5.6)

In order to determine spectral intensity of function Γ ,
it is necessary to break down the right side of the formula
(5.1) into common fractions. So, we obtain the following:

Γ (ω) =
i

2π

[
2g2

E2
0

1
ω

+
(

1
2
− g2

E2
0

+
a

E0

)
1

ω − ω0

+
(

1
2
− g2

E2
0

− a

E0

)
1

ω + ω0

]
, (5.7)

where ω = E/~ and ω0 = E0/~. Since function Γ is
anticommutator’s function, its spectral intensity is given
by the formula [7]:

IΓ (ω) =
Γ (ω + iδ) + Γ (ω − iδ)

e
~ω

kBT + 1
, δ → +0, (5.8)

and using Dirac’s formula: (ω − ωk ± iδ)−1 =
P.V.{(ω − ωk)−1}∓ iπδ(ω−ωk), where P.V. denotes prin-
cipal value of integral, we find the explicit expression for
spectral intensity:

IΓ (ω) =
2g2

E2
0

δ(ω)
e~ω/kBT + 1

+
(

1
2
− g2

E2
0

+
a

E0

)
δ (ω − ω0)
e~ω/kBT + 1

+
(

1
2
− g2

E2
0

− a

E0

)
δ (ω + ω0)
e~ω/kBT + 1

. (5.9)

Now we can define the expression for correlation function
of a free photon as

〈
P+(0)P (t)

〉 ≡
∫ +∞

−∞
dω e− iωtIΓ (ω)

=
2g2

E2
0

1
2

+
(

1
2
− g2

E2
0

+
a

E0

)
e− iω0t

e~ω0/kBT + 1

+
(

1
2
− g2

E2
0

− a

E0

)
e iω0t

e~ω0/kBT + 1
. (5.10)

Next, we can calculate expression for concentra-
tion of spin excitations of a free photon. It is ob-
tained from (5.11), if we take in it that t = 0, i.e.
〈P+P 〉 = 1

2 − a
E0

tanh ~ck
kBT . Combining formulae for

a over formula (4.6), and E0 from (5.6), and convert-
ing to sphere coordinate system, we find that a

E0
=

1
2 (sin 2ρ sin θ cos ϕ + cos 2ρ cos θ). In accordance with
this, we get the following expression for ordering param-
eter of spin subsystem in a free photon:

σ = 1− 2
〈
P+P

〉

= (sin 2ρ sin θ cos ϕ + cos 2ρ cos θ) tanh
~ck
kBT

(5.11)

The set of results of this section requires some expla-
nations. The most interesting result is that energy for
spin translation from ~/2 to −~/2 is 2~ck. This can
be explained on the basis of measuring process in which
incident photon bean is reflected by measuring devices.
The angular momentum of incident phonon is ~k while
of reflected phonon is −~k. So we obtain the change of
photon momentum ∆p = ~k − (−~k) = 2~k, and con-
sequently the energy change ∆E = 2~ck. The energy
−~ck corresponds to antiphoton, so that we can consider
the described process as a transformation of photon to
antiphoton. In this process the spin change takes place,
also the Green function Γ (t) = 〈〈P (t)|P+(0)〉〉 was calcu-
lated. Since photon and antiphoton spins have opposite
signs the change of the spin is ∆S = ~/2 − (−~/2) = ~.
The value of ∆S is equal to ~ and this is eigenvalue of
spin S = 1. This is the reason for behaving of photon
as particle with spin S = 1. The polar and azimuthal
dependences of ordering parameter comes from the fact
that incident beam must not be always orthogonal to the
plane of measuring device.

6. Conclusion

Concluding the exposed analysis we shall try to con-
nect the results obtained in series of experimental investi-
gation of photon orbital angular momentum [11–20]. We
did not describe all quoted experiments. Instead of it
we described the essential idea: the orbital momentum
of photon was determined from the changes of torque of
rotating particles. These changes lied in some interval,
so that the values of orbital angular momentum have had
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dispersion. As it was said at the end of first section, such
result is expectable for relativistic objects, in this case for
photons. The azimuthal dependence of measured results
is also predicted by the theory exposed in Sect. 5.

Acknowledgments

Investigations whose results are presented in this pa-
per were partially supported by the Serbian Ministry of
Sciences (grant No. 141044A) and by the Ministry of Sci-
ences of Republic of Srpska.

References

[1] A. Messiah, Quantum Mechanics, North-Holland,
Amsterdam 1970.

[2] P.A.M. Dirac, Principles of Quantum Mechanics,
4 ed., Univ. Press, Oxford 1958.

[3] M. Sapaznjikov, Anti-World — a Reality, Znanie,
Moscow 1983 (in Russian), p. 33, 34.

[4] A.S. Davydov, Quantum Mechanics, Pergamon, Lon-
don 1976.

[5] V.B. Berestetskii, E.M. Lipshitz, L.P. Pitaevskii,
Quantum Electrodynamics, Pergamon, Oxford/New
York 1982.

[6] V.M. Agranovich, Theory of Excitons, Nauka,
Moscow 1968 (in Russian).

[7] S.V. Tyablikov, Methods in the Quantum Theory in
Magnetism, Plenum, New York (1967).

[8] B.S. Tošić, Statistical Physics, Faculty of Sciences,
Novi Sad 1976 (in Serbian).

[9] G. Rickayzen, Green’s Functions and Condensed Mat-
ter, Academic Press, London 1980.

[10] G. Mahan, Many Particle Physics, Plenum Press,
New York 1990.

[11] R.A. Beth, Phys. Rev. 50, 115 (1936).

[12] J. Leach, M.J. Padgett, S.M. Barnett, S. Franke-
-Amold, J. Courtial, Phys. Rev. Lett. 25, 257901
(2002).

[13] L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw,
J.P. Woerdman, Phys. Rev. A 45, 8185 (1992).

[14] P.J. Allen, Am. J. Phys. 74, 1185 (1966).

[15] H. He, M.E.J. Friese, N.R. Heckenberg,
H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826
(1995).

[16] M.E.J. Friese, J. Enger, H. Rubinsztein-Dunlop,
N.R. Heckenberg, Phys. Rev. A 54, 1593 (1996).

[17] S.J.van Enk, G. Nienhuis, Opt. Commun. 94, 147
(1992).

[18] E. Santamato, B. Daino, M. Romagnoli, M. Settem-
bre, Y.R. Shen, Mol. Cryst. Liq. Cryst. 143, 89
(1987).

[19] A.T. O’Neil, I. Mac Vicar, L. Allen, M.J. Padgett,
Phys. Rev. Lett. 88, 053601 (2002).

[20] K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-
-Cerda, J. Arlt, K. Dholakia, J. Opt. B 4, S82 (2002).


