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The system composed of the array of eight semiconductor, chemoresistive gas sensors was used for the
classification of hydrogen, methane and carbon oxide gaseous samples. The classification task was performed by
pattern recognition methods applied to the multivariate response of the array. The pattern recognition scheme
used for classification uses a feature subset selection algorithm coupled with an objective function designed for
clustering and a multilayer perceptron classifier.

PACS numbers: 02.50.Sk, 07.07.Df, 84.35.+i

1. Introduction

From the practical point of view, chemoresistive gas
sensors based on SnO2 belong to the most important
sensor type due to their high sensitivity, good accuracy,
short response time, good stability and suitability to
portable instruments [1]. The major disadvantage of a
tin-oxide based sensor is its non-selectiveness and cross-
-sensitivity [2]. Selectivity can be enhanced by doping
of the surface of the sensing layer with noble metals as
palladium or platinum [1, 2]. Metallic surface dopants
act as specific adsorption sites for the oxygen species and
catalytic oxidation of reducing gases taking place on the
surface of the sensor layer. On the other hand, selec-
tivity can be increased by means of pattern recognition
methods [3, 4]. Pattern recognition is a process in which
raw data are collected and then processed basing on the
category to which data belongs. Cross-sensitivity is in
this case a very important feature of the sensors because
the system which uses the pattern recognition methods
demands superfluous input information from the array of
sensors.

2. Pattern recognition scheme

In the case of qualitative analysis of the sensed envi-
ronment the pattern recognition procedure is composed
of four steps: pre-processing, dimensionality reduction,
classification and identification. In most cases, the aim
of pre-processing is shifting, compressing and normaliz-
ing of the raw steady-state and transient-state signals
from the sensor array in order to improve the perfor-
mance of the subsequent steps. After pre-processing raw
data are converted into the feature vector in high di-
mensional space which is a descriptive parameter of the
sensor array response. In most cases after pre-processing
the dimensionality of the feature vector is in the order
of millions. Processing of such data demands a reduc-
tion of dimensionality to hundreds or at most thousands

dimensions. The initial set of features is mapped into
the low-dimensional feature space that preserves most of
the information accumulated in the original feature set.
This reduction is usually achieved by means of feature ex-
traction techniques or feature selection techniques [4, 5].
Reduced feature vectors are used then in the classifica-
tion step. In this step most important is the procedure
that clusters together the feature vectors related with the
given chemical composition of the sensed environment.
This step can be quite extensive and can be extended
by means of further dimensionality reduction techniques
working in union with feature space search techniques
[4, 6]. One of the most popular types of classifier is a
multilayer perception which establishes the classification
boundaries in a reduced feature space [4]. In the last
step, the identification step, the signal from the array
of sensors is assigned to a class and the occurrence of a
particular pattern is recognized.

3. Experimental setup

The sensor array used in the experiment is composed of
chemoresistive gas sensors based on SnO2. In our setup
we are using a group of eight Figaro sensors, whose list
is given in Table.

TABLE
Sensors forming the array and gases for which the
sensors are destined in compliance with data sheets
provided by Figaro Engineering Inc.
Sensor Destination Sensor Destination

TGS800 general air TGS2602 C3H8, C4H10, CH4

contaminations

TGS813 CH4, C3H8, C4H10 TGS2610 CH4, C4H10, H2

TGS842 H2, CO TGS2611 C3H8, C4H10, CH4

TGS2600 general air TGS2620 C2H5OH, H2, C4H10

contaminations

(419)
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The sensors worked in a continuous flow controlled sys-
tem at a constant temperature mode. The time of expo-
sition and purging periods was sufficient to achieve a sta-
tionary response for each sensor. The measurements of
the conductivity of the sensors were made automatically
and the data were sampled with a frequency of 10 Hz.
The pre-processing procedure consists of a logical analy-
sis of the signal from the sensor array on the basis of the
signal from the gas controller in order to find the starting
and ending points of adsorption/desorption cycles. The
registered signal was filtered using the Hanning window.
Finally, the baseline compensation for two modes, differ-
ential and proportional, was performed and the baseline
conductivity of each of the sensors was calculated.

4. Experimental results

The sensor array was exposed to cyclic interaction
with different concentrations of hydrogen (H2), methane
(CH4) and carbon oxide (CO). All gases were diluted in
synthetic air of a known relative humidity. In all experi-
ments the total gas flow rate was 100 sccm. The concen-
trations of the gases were respectively H2: 0–20000 ppm,
CH4: 0–500 ppm, CO: 0–500 ppm.

Up to 70 features for each sensor were calculated for
each gas sample of a given concentration. These yields up
to 560 dimensions in feature space. In the feature extrac-

Fig. 1. Set of feature vectors in a unoptimized three-
-dimensional secondary feature space (t1, t2, t3 —
independent components).

Fig. 2. Set of feature vectors in an optimized three-
-dimensional secondary feature space (t1, t2, t3 —
independent components).

tion phase this dataset was reduced to three dimensions.
The reduction was performed using a combination of fea-
ture extraction and feature selection techniques. The fea-
tures were selected by means of filter approach. The em-
ployed search strategy was based on the plus-L minus-R
selection algorithm (LRS) [7, 8], with the independent
component analysis (ICA) as a dimensionality reduction
technique [9]. In our software the JADE implementation
of the ICA algorithm was used [10]. For the purpose of
evaluation our own method was used. The method is
based on the combination of scattering matrices, calcu-
lating variances of the distances of the cluster centres and
employing the penalty functions. The method strongly
favours the situation where the clusters corresponding to
each class (in our case each gas) are evenly distributed
and are of the even size. Additionally favoured are sit-
uations where clusters are small and distant from each
other. Such a distribution is favourable for each subse-
quent classification step.

As a result, our FSS implementation was able to per-
form accurately a separation of three gases under consid-
eration regardless of their concentration. The results of
optimization of low-dimensional feature space are shown
in Figs. 1 and 2. Set of features in unoptimized feature
space is shown in Fig. 1, whereas the optimized feature
space is shown in Fig. 2. It can be seen that the clusters
in the optimized feature space are far more compact than
in the unoptimized one. The complexity of the classifier
depends strongly on the secondary feature space opti-
mization.
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Fig. 3. The structure of the classifiers for unoptimized
and optimized secondary feature spaces.

Fig. 4. The dependence of the RMS error of multilayer
perceptron and the MADALINE network in the subse-
quent learning epochs.

In order to find decision boundaries two types of neural
network classifiers were used. Their structures are shown
in Fig. 3. In the case of the unoptimized feature space
the multilayer perception learned by using the back prop-
agation algorithm was used. In the case of the optimized

feature space the simple MADALINE network was able
to find the decision boundaries and classify correctly all
the features from test set. The numerousness of learning
and test sets were 40 and 25 samples, respectively. The
comparison of learning process of both networks is shown
in Fig. 4. Optimization of secondary feature space sim-
plifies significantly the classifier and makes the learning
process shorten.

5. Conclusions

Using the array of eight, non-selective, general-purpose
SnO2 sensors, the employed pattern recognition methods
allow us to construct the simple non-parametric classifier,
which is able to recognize and classify hydrogen, methane
and carbon oxide gas samples. The sensors were work-
ing at constant temperature mode in a continuous-flow
chamber. Future works will involve using the sensors in
the temperature modulation mode, in closed chambers
and in free air. Additionally the numerical analysis will
be extended in regression methods in order to classify gas
mixtures and to evaluate their concentrations.
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