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The paper presents analogies between acoustic and electromagnetic wave field occurring in limited areas, such
as waveguides, when electromagnetic waves are not purely transversal. The acousto-electromagnetic analogies
exist in structures such as plane, rectangular or cylindrical infinite waveguides, if the fields are analysed by means
of potentials — the velocity potential for sound waves and the Hertz potentials for electromagnetic waves. It
has been demonstrated why these analogies between the potentials representing solutions of the wave equation
with adequate boundary conditions and expressed as sums of admissible duct modes do fail, in general, for
the semi-infinite cylindrical duct, and why they remain valid when the propagating electromagnetic mode is
axisymmetric.
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1. Introduction

There is a strong trend in contemporary physics to-
wards unified description of different phenomena. Prop-
agation of sound and electromagnetic (EM) waves can
serve as a good example here.

Analogies between sound and electromagnetic wave
fields occur predominantly in limited areas, such as, for
instance, the waveguides, when EM waves are not purely
transversal [1].

Waveguides are structures that guide specific wave
modes (wave spectrum) and transmit energy at long dis-
tances. Examples of ducts most frequently considered in
acoustics include absolutely rigid (hard), absolutely soft,
and of absorbing-surface ducts, whether with or without
medium flow, while in electromagnetism/optics the most
significant problems are related to ducts with conducting
or dielectric walls, optical fibres and photonic crystals.
Acoustic rigid ducts, constituting components of heating
and air-conditioning systems, housings of jet engines etc.
are sources of harmful and undesired noise and therefore
are subjects of studies involving active and passive noise
control methods [2, 3]. Soft acoustic ducts demonstrate
good attenuation properties and are subject of new ap-
plications [4]. Electromagnetic waveguides, transmitting
power or information signals, are designed depending on
the transmitted wavelength [5]. In this paper the ideal
conductive ducts are considered.

In waveguides, acousto-electromagnetic analogies oc-
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cur if the symmetry is high (e.g. in infinite length ducts)
and if the field is analyzed by means of potentials —
the velocity potential for sound waves and the Hertz po-
tentials for electromagnetic waves. Such analogies for
infinite rectangular and cylindrical waveguides were dis-
cussed in [6], but it is evident that the results may be
extended to infinite duct of any geometry. The way in
which the potentials are introduced, providing satisfac-
tion of basic field equations such as the Euler equation
for the sound waves [7] and the Lorentz gauge condition
[8] for EM waves, not only simplifies description of the
physical fields, but also underlines their general features
that, in turn, allow to derive the acousto-electromagnetic
analogies.

A question arises if these analogies remain valid for
semi-infinite ducts when diffraction of the incident wave
is considered.

2. Governing equations

2.1. Field potentials

In acoustics, the velocity potential Φak is introduced
in order to satisfy identically the Euler equation [7]:

∇p + ρ0
∂vak

∂t
= 0. (1)

The acoustic velocity vak and pressure p are related
to this potential as follows: vak = −∇Φak, p = ρ0∂tΦak,
where ρ0 means the average density of the medium.

In electromagnetism/optics, the Hertz electric poten-
tial Π E is introduced in order to satisfy identically the
Lorentz gauge condition [8] for electromagnetic field po-
tentials A and φ, with c denoting wave velocity
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∇ ·A +
1
c2

∂φ

∂t
= 0, (2)

leading to the following expressions for these potentials:
A = c−2∂tΠ

E , φ = −∇ ·Π E , while the Hertz magnetic
potential Π H is introduced in order to satisfy identically
the Lorentz gauge condition for dual electromagnetic po-
tentials A∗ and φ∗ [8]:

∇ ·A∗ +
1
c2

∂φ∗
∂t

= 0, (3)

and therefore A∗ = c−2∂tΠ
H , φ∗ = −∇ ·Π H .

Each of these potentials satisfies the wave equation,
with c denoting, this time, the respective wave velocity

∆Π − 1
c2

∂2Π

∂t2
= 0, ∆Φak − 1

c2

∂2Φak

∂t2
= 0, (4)

that, for harmonic excitation, turns into the Helmholtz
equation [7]:

∆Π + k2Π = 0, ∆Φak + k2Φak = 0. (5)
In a duct with axis z (circular, rectangular etc.), the elec-
tromagnetic field is determined by the one-component
Hertz vector potential [8], while the acoustic field is al-
ways determined by a scalar velocity potential, thus ac-
cording to the rule — the same equations have the same
solutions — one can write Πz = Φak, if only the bound-
ary conditions on the duct surface are the same.

2.2. Boundary conditions

In acoustics, the boundary conditions on a specific
duct surface Σ are determined by values of the acous-
tic pressure p and velocity vak or, equivalently, by the
acoustic wall impedance Zak = p/vn [7]. In electromag-
netism the boundary conditions on Σ are determined by
the Maxwell equations [8] and depend on the duct sur-
face properties — its electric permittivity and conduc-
tivity as well as magnetic permeability. They can also
be derived by means of electromagnetic wall impedance
Zem = Π E/Π M [9].

The Dirichlet boundary condition is appropriate for
soft acoustic ducts and the transversal magnetic (TM,
called also Emn) waves in conducting-wall ducts [7, 8]:

Π E
z

∣∣
Σ

= 0, Φsoft
∣∣
Σ

= 0, (6)
while the Neumann boundary condition for the normal
derivative of the respective potential is adequate for hard
acoustic ducts and transversal electric (TE, or Hmn)
waves in conducting ducts [7, 8]:

∂Π H
z

∂n

∣∣∣∣
Σ

= 0,
∂Φhard

∂n

∣∣∣∣
Σ

= 0. (7)

The correspondence between acoustic and electromag-
netic potentials introduced above, as well as respective
boundary conditions, induce analogies, at least in an
infinite duct, which will be analyzed in the next sec-
tion. However, it must not be forgotten that the acoustic
modes which propagate in a hard duct will not be allowed
in a soft duct and vice versa, while both kinds of elec-
tromagnetic modes TM and TE can exist simultaneously
in an ideally conductive duct. This asymmetry can lead
to disturbance in the considered acousto-electromagnetic

analogies in case of wave diffraction at the waveguide
outlet.

3. Acousto-electromagnetic analogies

3.1. Infinite duct

Solutions of the Helmholtz equation in an infinite cir-
cular duct of radius a have the following features: the for-
mulae for the potentials in a soft/hard acoustic duct and
TM/TE electromagnetic waves have the same form [6]:

Π E,H
mn /Φak

mn(ρ, ϕ, z)

= amn e imϕJm

(
βmnρ

a

)
e i (γmnz), (8)

where Jm denotes the Bessel function of order m, am —
the complex mode amplitude, βmn — the radial wave
number. The axial wave numbers and the cut-off fre-
quencies are different. The axial wave numbers are
γmn =

√
k2 − β2

mn, where βmna = vmn, Jm(vmn) = 0 for
the Neumann condition and βmna = µmn, J ′m(µmn) = 0,
for the Dirichlet condition.

It may be worth noting that for the rectangular duct
the potentials for soft/hard duct or TM/TE waves in
the conducting duct differ (they are expressed by sine
and cosine functions, respectively), while the axial wave
numbers and the cut-off frequencies are the same [6].

The analogies between potentials of acoustic modes
in soft/hard duct and electromagnetic Emn/Hmn modes
(TM/TE) are as follows:

Π E
mn ↔ Φsoft

mn , (9)

Π H
mn ↔ Φhard

mn . (10)
It should be remembered that these analogies consist in
reciprocal correspondence between the acoustic scalar po-
tential and the Hertz electromagnetic potentials. The
nature of fields is different — the acoustic wave field is
described by scalar acoustic pressure p, while the elec-
tromagnetic field is described by the E, H, D, B field
vectors, related to the Hertz potentials and dual poten-
tials as follows:

E = −∇φ− ∂A

∂t
= − 1

c2

∂2Π E

∂t2
+∇(∇ ·Π E), (11)

B = ∇×A =
1
c2
∇× ∂Π E

∂t
, (12)

D = −∇×A∗ = − 1
c2
∇× ∂Π H

∂t
, (13)

H = −∇φ∗ − ∂A∗
∂t

= ∇(∇ ·Π H)− 1
c2

∂2Π H

∂t2
. (14)

Detailed calculations of the electromagnetic wave field
vectors [8] lead to the conclusion that the plane electro-
magnetic wave (m = 0, n = 0) does not propagate in
a conducting duct — this may be easily proved on the
grounds of the theory of potential, the constant value
of which at a certain boundary results in its constant
value in the whole region, and leads to zero value of the
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electromagnetic field vectors. Another feature of electro-
magnetic modes in a circular duct consists in their de-
generacy, E1n = H0n, being a consequence of the Bessel
functions property J ′0(x) = −J1(x) [7].

3.2. Semi-infinite duct — circumferential modes

The semi-infinite unbaffled duct model, applied in both
— theoretical approach to and technical design solu-
tions of such structures as e.g. jet engines mounted in-
side large cylinder-shaped casings, means in practice the
duct long enough (comparing to the wavelength) to ac-
count for diffraction only at one end. Mathematically
that means the necessity to solve the wave/Helmholtz
equation with the Dirichlet/Neumann boundary condi-
tion imposed on a semi-infinite cylindrical surface. Solu-
tions to the problem obtained by means of the Wiener–
Hopf method were presented in papers by Weinstein [10],
Levine and Schwinger [11], and Snakowska [12, 13].

The diffraction weakens, in a sense, the infinite-duct
analogies, because at the duct exhaust each given acous-
tic mode representing a solution of the Helmholtz equa-
tion in a soft duct transforms in all cut-on acoustic modes
of the same circumferential order m, with transformation
coefficient Rsoft

mnl [13] and the cut-on frequencies deter-
mined by the relation Jm(vmn) = 0, so the diffracted
field can be symbolically written down as

Φsoft
mn →

∑
Rsoft

mnlΦ
soft
ml . (15)

Similarly, at the exhaust of a hard duct, each propa-
gating mode transforms in all cut-on acoustic modes of
the same circumferential order with transformation coef-
ficient Rhard

mnl [12] and the cut-on frequencies determined
by the relation J ′m(µmn) = 0:

Φhard
mn →

∑
Rhard

mnl Φ
hard
ml . (16)

In both kinds the resulting diffracted acoustic field can
be expressed as

Φdif
mn = Φinc

mn +
∑

l

RmnlΦml, (17)

where potentials on the right side mean potentials of sub-
sequent modes in a soft/hard infinite duct.

As both kinds of electromagnetic waves, TM and TE,
can propagate in a conducting duct, the diffraction phe-
nomena of these waves look different. At the exhaust
a single electromagnetic mode TM or TE transforms in
general into all cut-on modes of both kinds TM and TE,
so the diffracted field contains waves of both kinds, which
can be written down as

Π dif,E
mn = Π inc,E

mn +
∑

l

RE,E
mnlΠ

E
ml

+
∑

l

RE,H
mnl Π

H
ml, (18)

Π dif,H
mn = Π inc,H

mn +
∑

l

RH,H
mnl Π

H
ml

+
∑

l

RH,E
mnlΠ

E
ml, (19)

where RE,E
mnl means transformation coefficient of mode

Emn into Eml, and RE,H
mnl — transformation coefficient

of the mode Emn into Hml, etc.
For circumferential modes m 6= 0 this breaks the anal-

ogy between the acoustic and Hertz potentials of the
diffracted field. The situation is different when consid-
ering propagating radial modes (axisymmetric, m = 0).
Calculating the components of the EM field vectors E,
H from Eqs. (1)–(4), one obtains for the mode E0n:

Eϕ = 0, Hρ = 0, Hz = 0, jϕ = 0, (20)
where j means the electric current density [7]. The re-
maining components will have certain non-zero values.

Repetition of these calculations for the symmetric H0n

mode determines the following vanishing field compo-
nents:

Eρ = 0, Ez = 0, Hϕ = 0, jz = 0, (21)
It follows from the above that acousto-electromagnetic

analogy is valid also when the propagating wave is
diffracted at the duct outlet provided that the excita-
tion is axial; then

Π E
0l ↔ Φsoft

0l , (22)

Π H
0l ↔ Φhard

0l , (23)
because each non-zero field component in E0n mode, such
as {Ep, Ez,Hϕ, jz} takes zero value in H0n mode, so the
TM mode cannot transform into TE and vice versa.

A question arises whether some other analogies, e.g.
in ultraviolet or visible light region are possible. If a
waveguide is considered as a device with determined spec-
trum, one may expect some other analogies in such “wave-
guides” as quantum wells [14, 15] and photonic crystals
[16, 17], based on solutions of the Schrödinger equation.

4. Conclusions

The following analogies can be derived between the
acoustic field in ducts and the electromagnetic field in
microwave waveguides:

• between the Hertz electric potential in an infinite
conducting duct and the acoustic velocity potential
in a soft duct of the same geometry;

• between the Hertz magnetic potential in a conduct-
ing duct and the acoustic velocity potential in a
hard duct of the same geometry;

• in semi-infinite ducts of cylindrical geometry the
analogy exists only for potentials corresponding to
axially symmetric modes;

• new analogies in ultraviolet and visible light region
may be developed.
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