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The optimization of the transmitted signal time—frequency structure is the very important part of the radar
system design from the point of view of the radar system effectiveness. In this meaning the radar ambiguity
function is the basic tool used for the radar system features testing. The synthesis procedure of the signal with
simultaneous amplitude and phase manipulation is presented in the paper. The procedure is based on the Zak
transform that is connected with the radar ambiguity function. The Legendre polynomials were applied in the
procedure mentioned above. The results of the simulation tests are presented as examples of the consideration

main effects.
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1. Introduction

The radar transmit signal with linear frequency modu-
lation (LFM) is very common in practice. It results from
its advantages from the radar applications point of view.
Despite the LFM signal importance there is necessity to
look for new types of transmitting signals giving a chance
to improve the quality of information taken from radar
systems. Moreover, there is possibility to reach such the
ambitious goals thanks to among others technology devel-
opment concerning for example solid state transmitters
etc. As a result, signal generation with amplitude modu-
lation becomes possible. >From these reasons to look for
more sophisticated methods of the radar transmit signals
synthesis is reasonable. His paper is concentrated on one
of them.

The synthesis method of the radar transmitted signal
with amplitude and frequency modulation is considered
in the paper. It is based on the relation between the sig-
nal radar ambiguity function (RAF) and the signal Zak
transform. According to literature [1-6] the Chebyshev
polynomials are applied in this case. In the paper Legen-
dre polynomials are used. The second part of the paper
consists of the problem formulation and general descrip-
tion of the signal synthesis method based on the relation
between the signal RAF and the signal Zak transform.
Analytic description of the synthesis method based on
the Legendre polynomials is presented in Sect. 3 of the
paper. The problem solution for the 8th Legendre poly-
nomial in a shape of simulation tests results concerning
synthesized signal is described in Sect. 4. Short conclu-
sions are written in Sect. 5.
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2. Problem formulation

Radar transmitted signals with the amplitude,
frequency or phase manipulation is on of the very
important signal family [7, 8]. The signal, consisting of
the subpulses sequence with the unitary duration time
and with the amplitude and frequency manipulation can
be described by the formula as follows:

M N
f@t) = Z Z amn rect(t —m) exp(j2mnt), (1)
m=—M n=—N
where a,,, — elements of the matrix A =
[@mn]2ar41)x(2n+1) that represents sub-pulses se-
ries coefficients, m — the sub-pulse number, n — the
number of the frequency component being n-th multiple
of the unitary frequency step in the m-th sub-pulse and

cct [t ] 1 for —05+m<t<05+m,
r —m| =
0 for elsewhere t.

The problem can be formulated as follows: having the
matrix A one should match values of its elements and its
dimension in order to achieve the time—frequency signal
structure that assures feature expected from the radar
tasks point of view. In order to find solution the RAF was
applied that describes the signal f(t) complex envelope
at the optimum receiver output as a function of the delay
time 7 and the Doppler frequency shift f4. It is described
by the formula as follows:

b= [ T HOF (L7 exp(—j2mfat)dt. (2)

In order to find the RAF of the signal (1) the Zak
transform was used that is defined as follows [1]: Let us
assume that the function f € L?(R) is known. The Zak
transform Z;{f(¢)} of the function f(t) is called the such
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representation in which Z; : f — Z¢{f} € L? (RQ) and
Vx,y € (0,1) it is truth that

> fla+k)exp(—j2rky). (3)
k=—oc0
One can show that between the signal RAF and its Zak
transform there is relation described by the dependence
as follows [1]:

£(7, fa) = //Ifoy

xexp (—j2n (fax + 7y)) dedy, 7, fa€ Z. (4)
Based on (4) and assuming the integrand [1] periodic fea-
ture one can conclude that the RAF values in the integer
points (7, fq) represent the periodic function |Z¢(z,y)|?
expansion coefficients into two-dimensional exponential
Fourier series.

Zs(z,y) =

As a result of the Zak transform of the signal defined
by Eq. (1) and using theorem concerning linearity and
shift in the time domain one can show that [1]:

Z Z Amn €XP .]27-‘-(”3j - my))
—M n=—N
where P(z,y) is a function of two variables z and y. This
function is periodic from the reason the both variables
have the period equal to 1. One can conclude that ac-
cording to (5) it is visible that

|Zs(@,y)* = IP(I I (6)
Based on (4) and (6) it can be written that

et [ [y

x exp (—j2n (fax — 1y)) dedy, 7, fa € Z. (7)
Based on (7) one can conclude that the signal (1) RAF
values for integer values (7, fq) are the periodic function
|P(x,y)|? expansion coefficients into two-dimensional ex-
ponential Fourier series. The matrix A of the coeflicients
of the assumed signal model corresponds with the dis-
crete values of the RAF described by (7). Based on (5)
the matrix A elements can be used as the expansion co-
efficients of the function P(x,y) into two-dimensional ex-
ponential Fourier’s series. It means that

G = / / P(z, ) exp (—j2m(nz — my)) dedy. (8)

Taking all together to describe a periodic function P(z,y)
is needed. It should make able both to calculate the RAF
X7 (75 fa) ;= f,=n values and to find coefficients amy of
the designed signal structure. A general scheme of the
analysed problem solution is as follows:

I 2 F acceptable
P(a,y) —[P(e.y)l" —Ix; (7 f)l | o
z,y€(0,1) T=m, fa=n eatures
F
— P(;v,y) — Amn - (9)
z,y€(0,1)

There are two possibilities concerning the periodic
function P(xz,y) description in the case of the synthe-

sis of the signal with simultaneous manipulation in the
amplitude and frequency. One of them is the function
P(z,y) formulation based on the Chebyshev polynomi-
als of the first kind and k& order [1]. In this paper to apply
the Legendre polynomials of the first kind and k order in
the signal synthesis procedure is assumed.

3. Radar signal synthesis using Legendre
polynomials

Mentioned above expectations concerning the function
P(z,y) fulfils the period function based on the Legendre
polynomials Py(z) of the first kind and k order. The poly-
nomial of order both 0 and 1 are respectively as follows:
Py(z) = 1, Pi(z) = z. The others can be determined
from the recurrent formula

Pen() = TR - B, (10)

In the considered case the polynomial is the function
of two variables z = p(x,y). Let us take into account the
formulae (7) and (8) that are basic for these method and
take into account that the Legendre polynomials values
for arguments from the real numbers set belong to the
real numbers set, too. As a result one can obtain

sgo= [ [ Ry

x exp (—j2n (fax — 7y)) dzdy,

= [ bt

x exp (—j2n(nx — my)) dedy. (12)
Taking into consideration the trigonometric function

z = ¢(x,y) = cos2my/x? + y? (13)

as the z = ¢(z,y) representation, the RAF of the syn-
thesized signal describes the formula as follows:

£ (7 fa) = /01/01 P cos (27r\/m>

xexp (—j2n (fax + 7y)) dedy, 7,fa€ Z. (14)
In the next step the coefficients a,,, values are found ac-
cording to (15) under condition that the RAF described
according to (14) fulfils expectations. Then

amnf// Pkcos 271' 12+y)

—j2n(nx — my)) dedy. (15)

For further consideration it was assumed that anal-
ogously to [1] the number of the matrix A significant
elements is 2k + 1 and that each row in the matrix
consists of only one dominant element. It means that for
each sub-pulse of the designed radar pulse is dedicated
exactly to one frequency. Taking into account above
comments it can be stated that the expected radar signal
structure that makes able to achieve the RAF requested
parameters is as follows:

Tafd€Z7 (11)

x exp (
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Z Amn,,, Tect(t —m) exp (j2mnmat), (16)
m=—k
where

max
ne{—k,....k}

and N \
ne{—k,....k}

{@mn}

Amn < Amnpg -

mng,, —

4. Simulation results

For this consideration explanation it was assumed that
the Legendre polynomial order is £ = 8. On the basis of
the iterative expression (10) one can achieve

Py(z) = 128(

—12602z% + 35). (17)

Taking into account expression (13) and trigonometric

identity for cosine function even powers the expression
(17) has a shape as follows:

Py (cos2my/a? +37) =
% (cos2my/z% +y 2048
4
X {6 35 cos (167r\/x2 +y2>
+ 429 cos (1271'\/1‘2 + yg)
+ 693 cos (87r\/x2 + y2>

2
1225}

64352% — 1201225 + 69302*

+ 315 cos (47r\/:r2 + y2) + 3

Assuming that for & = 8 the RAF described on the
base of expression (14) fulfils expectations, in the next
step the coefficients a,,, values of the radar signal wanted
structure were found. These coefficients were calculated
according to the expression as follows:

6435
/2
An 2048// { cos 167r x+y)
+ 429 cos (1271'\/3:2 +y )
+ 693 cos (87r\/x2 + y2> + 315 cos (47r\/x2 + y2>

2

n 1225
8

The time-causal shape of the wanted signal was described

with the help of the expression as follows:

(18)

exp (—j2m(nz — my)) dady. (19)

16
t) = Z Amn,,, rect(t —m — 0.5) exp (j2mnmat) ,(20)
m=0
where
Uy, =  max  {amn
me ne{—s,...,s}{ }
and Nme - \4 Amn S A, - (21)
ne{—S,..A,S}

The RAF (to be more precise — the radar ambiguity
surface) designed with the help of (14) is shown in Fig. 1.
It was done on the integer lattice for the Legendre poly-
nomial with k& = 8. The analogous RAF but described
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with the help of the Chebyshev polynomial with & = 8
is shown in Fig. 2 for comparison. One can notice the
higher side lobes concentration around the main lobe in
the case of the Legendre polynomial case with relation to
the Chebyshev polynomial case.

Fig. 1. Ambiguity surface on the integer lattice for
Legendre polynomial with k = 8.

Fig. 2. Ambiguity surface on the integer lattice for
Chebyshev polynomial with k& = 8.

The coefficients matrixes A described thanks to (21)
for the Legendre and Chebyshev polynomials are shown
in Figs. 3 and 4, respectively.

frequency
o

Fig. 3. Matrix A for Legendre polynomial with k£ = 8.

The simulation research results confirm previous as-
sumption according to which in each row of the matrix
A there is only one significant element.
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frequency
& o

Fig. 4.
k=S8

Matrix A for Chebyshev polynomial with

The synthesized signal real and imaginary part for
the Legendre and Chebyshev polynomial respectively are
shown in Figs. 5 and 6.
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Fig. 5. Real and imaginary part of the s(t) signal for

Legendre polynomial with k = 8.
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Fig. 6. Real and imaginary part of the s(t) signal for
Chebyshev polynomial with k = 8.

>From the presented figures it results that accord-
ing to assumptions the synthesized signal is manipulated
both in frequency and in amplitude. The signal synthe-
sized with the help of the Legendre polynomial consists
of the sub-pulses having zero frequency that corresponds
to the carrier frequency of the real signal as opposite to
the Chebyshev polynomial case.
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Fig. 7. Autocorrelation function of the s(¢) signal for

Legendre polynomial with k = 8.
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Fig. 8. Autocorrelation function of the s(t) for Cheby-

shev polynomial with k = 8.

For the synthesized signal its autocorrelation function
was described. This function represents the signal time
shape at the matched filter output in the case of the zero
Doppler frequency shift. The autocorrelation function
of the signals synthesized with the help of the Legendre
and Chebyshev polynomials are shown in Figs. 7 and 8§,
respectively.

The side lobes level of the autocorrelation function of
the signal synthesized based on the Legendre polyno-
mial is about 3 dB lower than it is in the case of the
Chebyshev polynomials application with approximately
the same main lobe width.

5. Summary

The Legendre polynomials usefulness for radar sig-
nal synthesis with amplitude and frequency manipula-
tion was shown in the paper. The side lobe levels of the
signal aperiodic autocorrelation function for the polyno-
mials with £ = 8 reach values about 3 dB lower with com-
parison with the results concerning the Chebyshev poly-
nomials application with the same order. The side lobes
distribution on the 7 f4 plane is different for the Legendre
and Chebyshev polynomials application. In the case of
the Legendre polynomials one can notice the higher side
lobes concentration around the main lobe of the RAF.
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The disadvantages of the Legendre polynomials are
their complicated analytic description in comparison with
the Chebyshev polynomials. It makes considerations
more complicated especially for the higher order of the
polynomials.

The paper is the kind of proof that looking for the
wider class of polynomials used in radar signal synthesis
is reasonable.
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