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In this paper the properties of semiconductors having cubic symmetry are considered in a real multidimen-
sional Euclidean space within the formalism of multivector Clifford algebra rather than, usually used for this
purpose, complex Hilbert space. In particular, it is demonstrated how the valence band energy spectrum and spin
properties may be calculated within Cl5 Clifford algebra and SO(5) symmetry group related with it.
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1. Introduction

Clifford algebras are the vector space algebras with
quantum mechanical spins incorporated within one
mathematical system. It is believed that these algebras
provide the most coherent mathematical language for
physicists [1, 2]. Coordinate geometry, vector analysis,
complex analysis, tensor analysis, Lie groups, differen-
tials forms, spinor analysis, twistors etc. can be incor-
porated within the Clifford algebra formalism. A part
of the Clifford algebra adapted to physics, in particu-
lar to describe the Newtonian and Minkowski timespace,
was named the geometric algebra [3–5]. Despite high ex-
pectations for the Clifford algebras to become the basic
computational tool in physics, this has not happened as
yet. Partly this can be explained by the fact that math
curriculum is not well matched to needs of the physics.
Secondly, the geometric algebra is relatively young math-
ematical physics discipline and, according to the argu-
ments of Dyson and Hestenes, the passionate advocate
of the geometric algebra, “the innovations in mathemat-
ical physics are almost always unfashionable when they
are introduced”, so “it takes 50 to 100 years for them to
achieve general recognition”. In Hestenes popular review
[3] the reader can find more references as well as websites
on the Clifford algebra.

In this paper the Clifford algebra Cl5 is applied to anal-
ysis of hole spectrum and spin properties of the valence
band of cubic semiconductors. The typical representa-
tives are A3B5 compounds, the valence band of which
is described by the Luttinger–Kohn Hamiltonian [6]. In
papers [7–9] the hole spin properties were analyzed in a
standard manner within the Hilbert space, either using
unitary matrices, or commutators to describe nontrivial
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free-hole spin precession properties. Here the problem
will be treated within Clifford algebra formalism that is
related to SO(5) symmetry group. It is shown that the di-
agonalization of the Hamiltonian can be viewed as a rota-
tion of the Clifford vector in the five dimensional real R5

Euclidean rather than complex Hilbert space. Since the
considered subject is relatively uncommon to solid-state
physicists, the needed properties of Cl5 and terminology
of the Clifford algebra are introduced at first. Then the
valence band properties are analyzed from the Cl5 alge-
bra point of view. Spin properties of conduction band
electrons in cubic semiconductors were recently analyzed
within the Clifford algebra formalism in paper [10].

2. Relevant properties of Cl5 Clifford algebra

2.1. General properties

Cl5 is made up of 25 = 32 elements usually denoted by
bold e:

— one scalar: e0;
— five vectors: e1, e2, e3, e4, e5;
— ten bivectors: e12, e13, e14, e15, e23, e24, e25, e34,

e35, e45;
— ten trivectors: e123, e124, e125, e134, e135, e145,

e234, e235, e245, e345;
— five tetravectors: e1234, e1235, e1245, e1345, e2345;
— one pseudoscalar: e12345.
For short, the product of the basis vectors ei was de-

noted as e12 ≡ e1e2, e123 ≡ e1e2e3 etc. The vectors ei

span the five-dimensional real Euclidean space R5 hav-
ing the positive-definite signature, i.e. the squares of ba-
sis vectors satisfy the relations e2

i = +1 for all i, and
eiej = −ejei if i 6= j. Both rules can be combined into
the anticommutation relation

eiej + ejei = 2δij , (1)
where δij is the Kronecker delta. Due to property (1),
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Clifford algebra elements make up a closed system, since
the elements with repeated indices can be contracted,
for example, e1232 = e1e2e3e2 = −e1e2e2e3 = −e1e3 =
−e13. With the help of contraction it can be shown that
the squares of all bivectors and trivectors give minus one,
e2

ij = −1 and e2
ijk = −1 (this is reminiscent of the imag-

inary unit i) and therefore are related with rotators in
R5 space, while the squares of scalar, tetravectors and
pseudoscalar e12345 give +1.

The general vector a in R5 can be expressed as a
sum a =

∑
i aiei, where ai are real-valued components,

ai ∈ R. The Clifford (or geometric) product of two
vectors a and b can be decomposed into two parts,
ab = a · b + a ∧ b, where a · b is the scalar product and
a∧ b is the wedge product. The latter geometrically rep-
resents an orientated plane. The scalar product is sym-
metric with respect to vector swapping, i.e. a · b = b · a,
while the wedge product is antisymmetric, a∧b = −b∧a.
Similarly, a general bivector can be written as a sum of
elementary bivectors, B =

∑
i 6=j bijeiej , where bij ∈ R.

The product of the vector a and bivector B brings about
higher order wedge products of type ei ∧ ej ∧ ek, which
represents an orientated 3D volume element. The high-
est order orientated elementary volume in R5 is given by
e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5. The wedged objects are called
the blades. They represent elementary cells in Cl5. The
important property is that under vector rotations in Rn

space all blades transform with the same law.

A general multivector M consists of a sum of multi-
vectors of specific ranks

M =
5∑

i=0

〈M〉i, (2)

where 〈M〉0 is the scalar part of the multivector, 〈M〉1
is the vector part, 〈M〉2 is the bivector part, etc. The
index i is called the grade. One can multiply the mul-
tivectors since the Clifford algebra, due to property (1),
always remains closed. The product of multivectors is
associative, A(BC) = (AB)C = ABC, however, it is
noncommutative, AB 6= BA.

There is a number of operations over the multivectors
in the Clifford algebra which we shall make use of. The
reversion brings the basis vectors to reverse order and
plays similar role as complex conjugation in the standard
quantum mechanics. For example, the element e123 after
the reversion becomes e321. The reversion will be de-
noted by tilde, thus, we shall write ẽ123 = e321 = −e123,
ẽ1234 = e4321 = e1234. After the reversion the multivec-
tor (2) becomes

M̃ = 〈M〉0+〈M〉1−〈M〉2−〈M〉3+〈M〉4+〈M〉5. (3)
If C and D are two multivectors, the reversion operation
obeys the following rules: (CD)̃ = D̃C̃, (C+D)̃ = C̃+D̃.

The other important operation is the exponentiation
of the multivector that allows to rotate the vectors in 5D
space. The exponential of the multivector A is defined
as a series:

eA = 1 +
A

1!
+

A2

2!
+

A3

3!
+ . . . (4)

For a general multivector this series cannot be summed
up in a closed form, at least, no such formula is known
to present author. However, for specific multivectors the
sum may be reduced to trigonometric or hyperbolic func-
tions. For example, if the multivector consists of a scalar
s and vector v = v1e1 + v2e2 + v3e3 + v4e4 + v5e5, the
exponential gives

es+v = es

(
sinh

√
vṽ +

v√
vṽ

cosh
√

vṽ

)
, (5)

where vṽ = v2
1 + v2

2 + v2
3 + v2

4 + v2
5 .

Similar situation holds for scalar and tetravector w =
w1e1234 + w2e1235 + w3e1245 + w4e1345 + w5e2345,

es+w = es

(
sinh

√
ww̃ +

w√
ww̃

cosh
√

ww̃

)
, (6)

where ww̃ = w2
1 + w2

2 + w2
3 + w2

4 + w2
5.

The general bivector B consists of ten terms: B =
b1e1e2 + b2e1e3 + b3e1e4 + b4e1e5 + b5e2e3 + b6e2e4 +
b7e2e5 + b8e3e4 + b9e3e5 + b10e4e5. Since, in general,
the series of eB cannot be summed up, only special cases
will be considered that will suffice for current calcula-
tions. The summation of the bivector exponential series
is based on the following observation: the fourth power
of the bivector B can be expressed through the scalar
part of BB̃,

〈BB̃〉0 =
10∑

i=1

b2
i , (7)

and the square of B. Namely, we find that
B4 = 〈B4〉0 − 2〈BB̃〉20 − 2〈BB̃〉0B2 (8)

for a general B. This equation is nothing else but a re-
currence formula that allows to express higher powers in
the series (4) by lower powers of B. However, the result-
ing series still appears too complicated to be summed
up. To introduce some simplifications, the recurrence
relation (8) will be rewritten as a product of two perpen-
dicular multivectors(

B2 + 〈BB̃〉0 + α2
)(

B2 + 〈BB̃〉0 − α2
)

= 0, (9)

where α2 =
√
〈B4〉0 − 〈BB̃〉20 . It should be noted that

the individual factors in the parentheses of Eq. (9) can-
not be equated to zero. Only their product gives zero.
If α = 0, the multivector factors in (9) become paral-
lel, which is equivalent to condition 〈B4〉0 = 〈BB̃〉20, i.e.
the scalar part of the fourth power of the multivector be-
comes equal to square of the bivector magnitude 〈BB̃〉0.
If this does happen then it follows from Eq. (9) that the
square of the bivector reduces to the scalar

B2 = −〈BB̃〉0. (10)
Under these conditions the exponential can be summed
up to

eB = cos
√
〈BB̃〉

0
+

B√
〈BB̃〉

0

sin
√
〈BB̃〉

0
. (11)

The minus sign in (10) guarantees that now the trigono-
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metric functions appear instead of hyperbolic ones. The
condition (10), as can be seen from recurrence Eq. (8),
is equivalent to B4 = 〈B4〉0, i.e. the fourth power of the
bivector should give the scalar. For example, the bivector
B1 = b1e12+b2e13+b3e14+b4e15 satisfies the mentioned
condition (10): B2

1 = −(b2
1 + b2

2 + b2
3 + b2

4). The bivec-
tor B2 = b1e12 + b5e23 + b6e24 + b7e25 also satisfies this
condition: B2

2 = −(b2
1 + b2

5 + b2
6 + b2

7).

2.2. Representation of basis vectors

In the literature, the most widely used representation
of the basis vectors employs the square matrices. The al-
gebra Cl5 is isomorphic to 2× 2 matrices the elements of
which are quaternions. In particular, the following cor-
respondence exists [2]:

e1 =

[
0 − i
i 0

]
, e2 =

[
0 − j
j 0

]
,

e3 =

[
0 −k
k 0

]
, (12)

e4 =

[
1 0
0 −1

]
, e5 =

[
0 1
1 0

]
. (13)

Here i , j , and k are quaternionic imaginary units with
properties i2 = j2 = k2 = i j k = −1. However, this
quaternionic representation is not suitable for our pur-
pose since the objects we would like to transform to the
Clifford algebra are complex 4 × 4 Hermitian matrices.
The required Dirac-like matrices having positive signa-
ture (+,+, +, +,+) were given in [11, 12]. As we shall
see, the following set of Γi matrices yields real coefficients
at basis vectors ei, as required by Cl5 after the decom-
position of the Hamiltonian and hole spin matrices,

e1 → Γ1 = σz ⊗ σy =




0 − i 0 0
i 0 0 0
0 0 0 i
0 0 − i 0


 , (14)

e2 → Γ2 = σz ⊗ σx =




0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0


 , (15)

e3 → Γ3 = σy ⊗ 1 =




0 0 − i 0
0 0 0 − i
i 0 0 0
0 i 0 0


 , (16)

e4 → Γ4 = σx ⊗ 1 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 , (17)

e5 → Γ5 = σz ⊗ σz =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 . (18)

These matrices satisfy the property (1):
ΓiΓj + ΓjΓi = 2δij , (19)

where δii now is the unit matrix. The matrix represen-
tations of the bivectors eij → Γij , trivectors eijk → Γijk

etc. can be found by multiplying the respective matri-
ces: Γij = ΓiΓj ,Γijk = ΓiΓjΓk etc. It should be noted
that the matrix representation (14)–(18) is not isomor-
phic to Cl5 algebra. For example, it is easy to show that
matrix representations of vectors and tetravectors are re-
lated in the following way: Γ1 = −Γ2345, Γ2 = Γ1345,
Γ3 = −Γ1245, Γ4 = Γ1235, Γ5 = −Γ1234. Apart from
the mentioned vector–tetravector pair similarity there are
similar equalities, with positive and negative signs, be-
tween bivector–trivector and scalar–pseudoscalar pairs.
However, the matrix representation is homomorphic to
Cl5 and, therefore, all group operations are preserved.
To avoid misconstructions in the following we shall map
the Hilbert space vectors and operators onto scalars, vec-
tors and bivectors only.

With the matrix representation (14)–(18) known, one
can decompose any complex matrix m into sum of its con-
stituent basis elements of Cl5. The required real-valued
components (projections) cb can be found from

cb = Tr(mΓb), (20)
where Tr is the trace and b is one of indices in e0, ei, eij .

3. Valence band and spin
in the Clifford algebra Cl5

Within spherical energy band approximation the
Luttinger–Kohn valence band Hamiltonian is [6]:

H =
1

2m0

[(
γ1 +

5
2
γ2

)
k2 − 2γ2 (k · J)2

]
, (21)

where γ1 and γ2 are band parameters, m0 is the elec-
tron mass, and k = (kx, ky, kz) is the hole wave vector.
J = (Jx, Jy, Jz) is the vectorial 4 × 4 total angular mo-
mentum represented by the following matrices:

Jx =




0
√

3
2 0 0√

3
2 0 0 0
0 0 0

√
3

2

0 0
√

3
2 0


 , (22)

Jy =




0 − i
√

3
2 0 0

i
√

3
2 0 0 0
0 0 0 − i

√
3

2

0 0 i
√

3
2 0


 , (23)
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Jz =




3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2


 . (24)

In the considered approximation the spin operator S dif-
fers from J by a constant, S = 1

3J . Therefore, we shall
refer to J as the spin matrix, too.

With the help of (20) the Hamiltonian (21) can be
rewritten in the Cl5 basis as

H =
γ1k

2

2m0
+

γ2k
2

m0
d, d =

5∑
n=1

dnen, (25)

where k2 = k2
x+k2

y+k2
z and dn are the real-valued projec-

tions on the respective basis vectors ei in 5D Euclidean
space

d1 = −
√

3kykz/k2, (26)

d2 = −
√

3kxkz/k2, (27)

d3 = −
√

3kxky/k2, (28)

d4 = −
√

3
2

(k2
x − k2

y)/k2, (29)

d5 = −1
2
(2k2

z − k2
x − k2

y)/k2. (30)

From (25) it is seen that the Hamiltonian is made up of
the scalar and vector in R5. On the other hand, the de-
composition of spin matrices (22)–(24) shows that they
are made up of bivectors only

Jx =
i
2
(−e1e4 −

√
3e1e5 + e2e3), (31)

Jy =
i
2
(−e1e3 +

√
3e2e5 − e2e4), (32)

Jz =
i
2
(e1e2 + 2e3e4). (33)

This is consistent with the fact that the bivectors in
the Clifford algebra are related with rotations in vari-
ous planes. Using the anticommutation relation (1) it
is easy to show that the operators (31)–(33) satisfy the
conservation law for quantum number j = 3/2,

J2
x + J2

y + J2
z = j(j + 1) = 15/4. (34)

New operators (25), (31)–(33) act in the Clifford space
where the operators and multivectors reside, while the
old ones (21)–(24) act on the spinors in the Hilbert space.

3.1. Rotation of basis vectors

One of the most useful operations in the Clifford al-
gebra is the rotation of 5D vector in R5 space spanned
by e1, . . . , e5 basis. We shall show that a proper selec-
tion of the rotations allows one to find eigenvalues of the
Hamiltonian.

The rotation by angle θ in the plane spanned by bivec-
tor eiej is performed with the help of a rotor

Rij(θ/2) = e
θ
2eiej = cos(θ/2) + eiej sin(θ/2) (35)

and its reverse R̃ij(θ/2) [2, 4]. The last expression fol-
lows from Eq. (11). The rotor R, in general, satisfies the

condition RR̃ = R̃R = 1. For example, the rotation of
the vector e1 by an angle ϕ in bivector plane e1e2 gives
new vector

e′1 = R̃12(ϕ/2)e1R12(ϕ/2) = e
ϕ
2 e2e1e1e

ϕ
2 e1e2

= e1 cos ϕ + e2 sin ϕ. (36)
However, the rotation of the same vector e1 in a plane
that does not hold the vector, for example e3e5, gives no
rotation at all,

e′′1 = R̃35(ϕ/2)e1R35(ϕ/2) = e1. (37)
This property is characteristic of spaces higher than 3D,
since in the higher order spaces nonparallel planes do not
necessarily intersect as it is in 3D.

Before going to eigenvalues of the Hamiltonian, it
should be noted that at kx = ky = 0 the initial Hamil-
tonian is diagonal and the vector d in (25) becomes par-
allel to e5. This suggests that the rotation of d in R5

space must end up in e5 direction. On the other hand,
Eqs. (36) and (37) suggest that for all possible rotations
to take place the bivector planes should be mutually cou-
pled. From this follows that the rotor that “diagonalizes”
the Hamiltonian (25) should have the following structure:

Rd = e
α
2 e1e2e

β
2 e2e3e

δ
2e3e4e

γ
2 e4e5 , R̃dRd = 1, (38)

where the angles α, β, δ and γ are to be determined.
If the rotor (38) is applied to individual basis vectors,
e′i = R̃deiRd, the new vectors are found to be related to
old ones in the following way

e′5 = −e4sα + e5cα, (39)

e′4 = −e3sβ + e4cαcβ + e5sαcβ , (40)

e′3 = −e2sδ + e3cβcδ + e4cαsβcδ + e5sαsβcδ, (41)

e′2 = −e1sγ + e2cδcγ + e3cβsδcγ + e4cαsβsδcγ

+e5sαsβsδcγ , (42)

e′1 = +e1cγ + e2cδsγ + e3cβsδsγ + e4cαsβsδsγ

+e5sαsβsδsγ , (43)
where the following shorthands sα = sin α, cα = cos α,
etc. were introduced.

To connect the components of the wave vector k in 3D
space with the rotation angles in 5D space the compo-
nents of a general vector a,

a = Rae5R̃a = e1 sin α sinβ sin δ sin γ

+e2 sinα sin β sin δ cos γ + e3 sin α sin β cos δ

+e4 sinα cos β + e5 cos α, (44)
will be equated to the components (26)–(30). Since
at kx = ky = 0 and α = 0 one has, respectively,
d = (0, 0, 0, 0,−1) and a = e5, it is convenient to fix the
angle α by a5 ≡ cosα = (k2

x +k2
y−2k2

z)/2k2. The pairing
of remaining di and ai components remains arbitrary. In
the following we shall equate the components in the same
order as they are given in Eqs. (44) and (26)–(30), i.e. we
shall assume that di = ai, where ai are the components of
the vector a in (44). The solution of the resulting system
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of equations di = ai with i = 1, . . . , 5, yields

cosα = d5, (45)

cosβ = d4

/√
1− d2

5, (46)

cos δ = d3

/√
1− d2

4 − d2
5, (47)

cos γ = d2

/√
1− d2

3 − d2
4 − d2

5. (48)

The equation for d1 represents radius of 4D sphere, d2
1 +

d2
2 + d2

3 + d2
4 + d2

5 = 1.
The eigenvalues of the Hamiltonian (25) are calculated

with the constructed rotor Rd that transforms the basis
vectors to new ones given by (39)–(43). Then, after in-
sertion of (45)–(48) and (26)–(30) one finds

Hd = R̃dHRd =
k2

2m0
(γ1 + 2γ2e5)

→




εL 0 0 0
0 εH 0 0
0 0 εH 0
0 0 0 εL


 . (49)

The matrix representation (18) was used to translate the
Hamiltonian to matrix form. The diagonal terms in this
matrix are dispersions of heavy- and light-mass energy
bands of holes,

εH,L =
γ1 ± 2γ2

2m0
k2, (50)

where the minus and plus correspond, respectively, to H
and L bands.

3.2. Spin surface

The energy bands are doubly degenerate and, in the
Hilbert space, they are described by four-component
spinors. The spin polarization depends on a relative
magnitude and phase between spinor components. In the
Clifford algebra approach the hole spin properties are de-
termined by coefficients at bivectors in equations of type
(31)–(33), where the basis vectors ei should be replaced
by transformed ones (39)–(43). The resulting new polar-
ization vector J ′ = (J ′x, J ′x, J ′x) then will be in the energy
representation. As an illustration we shall calculate light-
and heavy-hole spin surfaces.

The spin surface represents the loci of the ends of all
possible spin polarization vectors [13]. In case of conduc-
tion band electron the spin surface is represented by the
Bloch sphere. It can be calculated after parametrization
of light- and heavy-hole spinors by two parameters ϑ and
φ in the energy representation for a given hole wave vec-
tor k,

ψL = (cos(ϑ/2)e− iφ/2, 0, 0, sin(ϑ/2)e iφ/2), (51)

ψH = (0, cos(ϑ/2)e− iφ/2, sin(ϑ/2)e iφ/2, 0). (52)
Then, the average spin polarization vector will be

〈J〉L,H = 〈J ′〉L,H = 〈ψL,H|J ′|ψL,H〉, (53)
where the primes indicate that in the total angular mo-

mentum operator [see Eqs. (31)–(33)] the vectors ei

should be replaced by primed ones given by Eqs. (39)–
(43) and which correspond to diagonal Hamiltonian. To
come back to the Hilbert space it is enough to replace the
bivectors eiej by respective matrix products ΓiΓj . The
calculations give the following heavy-mass hole polariza-
tion vector:

〈J〉H = (kx, ky, kz)Q, (54)
where

Q = 3
[
kxkykzp cos ϑ +

(
(k2 + k2

z)s2 cosφ

+(k2
x − k2

y)k2
z sin φ

)
sin ϑ

]
/(2pk2s2). (55)

Here p2 = k2 + 3k2
z , s2 =

√
k2

xk2
y + k2

xk2
z + k2

yk2
z .

From Eq. (54) follows that the heavy-hole spin sur-
face reduces to line parallel to k. For k = (kx, 0, 0), k =
(0, ky, 0), and k = (0, 0, kz) Eq. (54) gives, respectively,

〈J〉Hx =
(

3
2

sin ϑ cos φ, 0, 0
)

, (56)

〈J〉Hy =
(

0,
3
2

sin ϑ cos φ, 0
)

, (57)

〈J〉Hz =
(

0, 0,
3
2

sin ϑ cosφ

)
. (58)

Thus, the heavy-hole average spin cannot be represented
on the Bloch sphere. The polarization vector can assume
any value, including zero, between ±3/2 and always is
parallel to k. The analysis of (54) shows that this prop-
erty holds for any wave vector k.

For a light-hole the average polarization vector was
found to be more complicated

〈J〉L = 〈J ′〉L = (〈J ′x〉, 〈J ′y〉, 〈J ′z〉)L
= (j′x, j′y, j′z)/(2pk2s2), (59)

where
j′x = −kykzp(2k2 − 3k2

x) cos ϑ

−kxp
(
s2 cosφ + (2k2

y + k2
z) sin φ

)
sinϑ, (60)

j′y = −kzkxp(2k2 − 3k2
y) cos ϑ

−kyp
(
s2 cosφ− (2k2

x + k2
z) sin φ

)
sinϑ, (61)

j′z = −kxkyp(2k2 − 3k2
z) cos ϑ

+kz

[
(5k2 − 3k2

z)s2 cos φ

−(2k4
x − 2k4

y − k2
xk2

z + k2
yk2

z) sin φ
]
sin ϑ. (62)

If the wave vector is directed along principle crystal-
lographic axes, i.e. k = (kx, 0, 0), k = (0, ky, 0), or
k = (0, 0, kz), the formulae (59)–(62) simplify, respec-
tively, to

〈J〉Lx =
(
−1

2
sin ϑ cos φ, sin ϑ sin φ,− cos ϑ

)
, (63)
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〈J〉Ly =
(
− sinϑ sinφ,−1

2
sin ϑ cos φ,− cos ϑ

)
, (64)

〈J〉Lz =
(
− cosϑ, sin ϑ sin φ,

1
2

sin ϑ cosφ

)
. (65)

Figure 1 depicts the spin surface 〈J〉Lz along with that
for 〈J〉Hz. It should be stressed once more that only the
shape of the surface matters rather than a concrete for-
mula that represents a grid, which merely visualizes the
surface. By this reason, depending on the method of cal-
culation, one can get different formulae for the same spin
surface. For example Eq. (65) may also be written in the
form

〈J〉Lz =
(
− sin ϑ sin φ,− cos ϑ,

1
2

sinϑ cos φ

)
. (66)

However the orientation of the surface depends on direc-
tion of k. This is seen in Eqs. (63)–(65) as well.

Fig. 1. Spin surfaces of heavy-mass (vertical line) and
light-mass (oblate spheroid) holes when k‖[001]. For
other directions of k the spin surfaces should be rotated
in the same way as k.

Finally, the following point will be noted. In the gen-
eral equation (59) the polarization components appear in
a form (a sin ϑ cosφ, b sin ϑ sin φ, c cosϑ), which suggests
that they represent three perpendicular vectors u, v and
w having polar components (a, b, c). It can be shown that
the volume spanned by the vectors u = 〈J ′x〉L, v = 〈J ′y〉L,
and w = 〈J ′z〉L is u · v ×w = 1/2, which is independent
of k and spinor parametrization scheme, and, apart from
a multiplicative constant, gives the volume enclosed by
light-hole spin surface. Thus, we conclude that the vol-
ume enclosed by the spin surface represents the invariant
within the spherical energy band approximation.

4. Summary

In the standard quantum mechanics the diagonaliza-
tion of the operators that act on the Hilbert space spinors
is done with an appropriate unitary transformation. The
present paper shows that in the Clifford algebra this
can be achieved with rotation of vectors in Euclidean
Rn space. Also the paper demonstrates how this can be
achieved in spherical and doubly degenerate valence band
case. In particular, it is shown that the Hamiltonian can
be diagonalized with four rotations of 5D vector in cou-
pled elementary bivector planes. In the Clifford algebra
the borderline between operators and spinors vanishes
and both are treated on equal footing with the help of
multivectors that are made up of products of basis vec-
tors ei. Thus, the rotation of basis vectors in the Eu-
clidean space automatically is reflected in the structure
of all Clifford operators, including spin or total angular
momentum operators. This was demonstrated by calcu-
lating the spin surfaces of light- and heavy-holes, which
appeared to be invariants within the approximation used
in this paper.
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