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Use of Quantum Mechanical Methods to Obtain
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A Bohm-type coefficient of diffusion is obtained by means of a procedure starting from the Hamiltonian of a
single electron in a dilute plasma in the presence of an external, uniform magnetic field of constant magnitude and
an electrical potential that serves to simulate an electrical fluctuation which drives the guiding center drift. Using
the concept of the differentiation of operators with respect to time, the formula for the well-known E ×B drift
velocity is recovered. Finally, the solution of a quantum mechanical equation of motion for the guiding center is
found in the quasi-classical approximation to obtain a diffusion coefficient.
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1. Introduction

The phenomenon of the diffusion of plasma across a
magnetic field has been observed in many natural and
laboratory plasmas. In particular, the Bohm diffusion
is important in some plasma experiments, the corre-
sponding coefficient being originally introduced semi-
-empirically by Bohm in 1946 [1]. Later experimental
observations in stellarators [2] prompted Spitzer [3] to
propose in 1960 a mechanism to explain the appearance
of this diffusion phenomenon as well as a way of deriv-
ing the corresponding coefficient by analyzing the mean
square value of the particle displacements due to E ×B
drifts generated by electric field fluctuations. By means
of this approach, Spitzer found an expression which is
proportional to the coefficient introduced by Bohm.

Various mechanisms have been proposed to explain the
existence of the Bohm diffusion [4] and in Ref. [5] the au-
thors propose that this coefficient may have a quantum
mechanical origin. The present paper is based on the idea
that a Bohm-type diffusion coefficient could be obtained
by using a quantum mechanical approach. The following
are the main reasons which have led the present author
to pursue this task. It is well known that the Bohm
diffusion coefficient presents two important features that
distinguish it from the “classical” diffusion coefficients [6],
viz. (a) its non-dependence on the particle density and
(b) its 1/B dependence. The former aspect may sug-
gest that a Bohm-type diffusion coefficient could be ob-
tained by studying the behavior of the motion of a single
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electron in a dilute plasma in the presence of an exter-
nal, uniform magnetic field of constant magnitude and an
electrical potential. The latter aspect could be related to
the quantum mechanical feature that the position of the
guiding center of a magnetically gyrating charged particle
is uncertain and is located inside an area of uncertainty
which is inversely proportional to the magnitude of the
magnetic field ([7], p. 756, [8]). It is then the purpose of
this paper to study, over a time comparable with a cy-
clotron period Tc, the behavior of a single electron with
a thermal energy kT in a dilute plasma (to avoid consid-
ering charge particle interactions) in the presence of an
external, uniform magnetic field of constant magnitude
from a quantum mechanical point of view, starting from
a Hamiltonian that includes an electrical potential that
serves to simulate an electrical fluctuation which drives
the guiding center drift.

2. Analytic calculations

Let us consider the problem of a moving electron with
charge e and mass m in the presence of a constant, uni-
form magnetic field B which for convenience will be along
the positive direction of the z axis. In this circumstance,
the components of the vector potential can be conve-
niently written for the purpose of this paper as follows:

Ax = −1
2
By, Ay =

1
2
Bx, Az = 0. (1)

As is well known from classical physics, the electron
moves along a well-defined circular orbit with a well-
-defined guiding center and a frequency ωc = eB/mc
called the cyclotron frequency and a radius ρL = νth/ωc

(197)
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called the Larmor radius, in which νth is the thermal
velocity of the electron.

Let us now write down the Hamiltonian operator for
a single electron with a thermal energy kT in a dilute
plasma in the presence of the magnetic field correspond-
ing to the vector potential (1) and an electrical potential
V (x, y) to describe the motion on the xy plane. This
potential will be assumed to vary slowly in times longer
than a cyclotron period and over distances more exten-
sive than the Larmor radius in such a way that the result-
ing drift velocity of the guiding center changes very slowly
in time and space. The interactions between charged
particles will not be taken into account in the present
treatment. The motion along the field lines will not be
considered in this paper and the term corresponding to
the spin of the electron will not be taken into account in
the Hamiltonian. With these considerations, the Hamil-
tonian is written in terms of components of the vector
potential given by (1) as follows:

Ĥ =
1

2m

(
p̂x +

eBy

2c

)2

+
1

2m

(
p̂y − eBx

2c

)2

+ eV (x, y) ≡ ĤB + ĤE , (2)
where p̂x = −i~ ∂

∂x and p̂y = −i~ ∂
∂y are the operators

of the x and y components of the canonical momentum
and ĤB and ĤE stand for magnetic and electric Hamil-
tonian, respectively. As is well known ([7], pp. 745–746),
the magnetic part of this Hamiltonian can be written as
the sum of a Hamiltonian for the two-dimensional har-
monic oscillator Ĥxy plus a term which is proportional
to the angular momentum operator L̂z corresponding to
the motion of the electron along its circular orbit on the
xy plane. The model represented by the Hamiltonian
(2) describes a two-dimensional motion of a typical elec-
tron in a magnetized dilute plasma in the presence of an
electrical potential that serves to simulate an electrical
fluctuation that will allow the electron to drift. On the
other hand, starting from the classical expressions for the
coordinates (x0, y0) of the guiding center of the orbit of
the electron, given in Ref. [9] and considering the vector
potential (1), the corresponding operator coordinates of
the guiding center (x̂0, ŷ0) can be written as follows:

x̂0 = x̂ +
c

eB

(
p̂y − eB

2c
x̂

)
,

ŷ0 = ŷ − c

eB

(
p̂x +

eB

2c
ŷ

)
, (3)

where x̂, ŷ are the operator coordinates of the electron.
As can easily be verified, the operator coordinates of the
guiding center commute with ĤB so that the physical
quantities x0, y0 are constants of the motion for the mag-
netic Hamiltonian, indeed,

ˆ̇x0 =
i
~

[
ĤB , x̂0

]
= 0, ˆ̇y0 =

i
~

[
ĤB , ŷ0

]
= 0, (4)

where the dot represents the derivative with respect to
time. Equations (4) mean that the guiding center does
not move in the absence of an electrical potential. On
the other hand, as can also be easily shown, the operator

coordinates of the guiding center do not commute with
each other; in fact, their commutator is

[x̂0, ŷ0] = −i
~c
eB

. (5)

Therefore, the following uncertainty principle can be con-
structed:

∆x0∆y0 ≥ 1
2
~c
eB

. (6)

Expression (6) indicates that the position of the guiding
center is uncertain inside a region of linear dimensions

∆r0 ≈
√
~c/eB. (7)

The orbit itself is also “spread out” to an extent of the
same order of magnitude in the radial direction [8]. Ex-
pressions (6), (7) indicate that the size of the uncertainty
area of the guiding center is inversely proportional to the
intensity of the magnetic field and does not depend upon
the mass of the electron.

For future reference, it is convenient to write down
the ratio (ρL/∆r0)

2 between the squares of the Larmor
radius and the linear dimensions of the uncertainty area
given by Eq. (7). In many experiments the magnitude of
this ratio is very large and can be written as(

ρL

∆r0

)2

≈ kT

~ωc
À 1. (8)

3. The drift velocity

As in Eqs. (4), let us find the operators of the time
derivatives of the physical quantities x0, y0 but now us-
ing the complete Hamiltonian (2). After some algebra
and considering that the operators x̂0 and ŷ0 commute
with ĤB , the following results are obtained:

ˆ̇x0 =
i
~

[
Ĥ, x̂0

]
= − c

B

∂V (x, y)
∂y

= c
Ey

B
≡ uDx, (9)

ˆ̇y0 =
i
~

[
Ĥ, ŷ0

]
=

c

B

∂V (x, y)
∂x

= −c
Ex

B
≡ uDy, (10)

which are the well-known components of the drift veloc-
ity of the guiding center of the electron’s orbit in the
presence of a constant magnetic field B and the electric
field related to the electrical potential V (x, y).

4. Obtaining a Bohm-type coefficient of diffusion

In this section, work will be carried out to describe the
motion of the guiding center on which both the charge
and the mass of the electron will be assumed to be sited.
It will be enough to consider only the motion along the x
coordinate to have an idea of the nature of the diffusion
process of the guiding center as well as an estimation of
the value of the corresponding coefficient. Therefore, let
us start from the following expression of type (4) for the
product x0ẋ0 using the complete Hamiltonian (2):(

dx0ẋ0

dt

)

operator

=
i
~

[
Ĥ, x̂0

ˆ̇x0

]
. (11)

A similar equation for the y component of the posi-
tion vector of the guiding center may be written. Con-
sider now that the electric Hamiltonian ĤE = eV (x, y)
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commutes with ˆ̇x0 = − c
B

∂V (x,y)
∂y and that the following

expression is valid:[
ĤB , x̂0

ˆ̇x0

]
= x̂0

[
ĤB , ˆ̇x0

]
+

[
ĤB , x̂0

]
ˆ̇x0

= x̂0

[
ĤB , ˆ̇x0

]
,

as ĤB and x̂0 commute with each other. Therefore,
Eq. (11) is rewritten as

d
dt

x0ẋ0 = ẋ2
0 +

i
~

[HB, x0ẋ0] , (12)

where the operator caps have been eliminated, as will be
done from now on. On the other hand, the Hamiltonian
HB can also be written as ([7], p. 754):

HB = ~ωc

(
Nd +

1
2

)
, (13)

in which the eigenvalues of the dimensionless number op-
erator Nd are the positive integers and zero. Substitution
of (13) in (12) produces the expression

d
dt

x0ẋ0 = ẋ2
0 + iωc [Nd, x0ẋ0] ,

which after performing the commutator operation gives
the operator equation

d
dt

x0ẋ0 = ẋ2
0 + iωcNdx0ẋ0. (14)

However, just as in the case of expression (8), it also turns
out that the following expression holds:

ρL

λB
≈ kT

~ωc
À 1, (15)

where λB is the de Broglie wavelength of the orbiting
electron. The last expression suggests that the system
can be treated by means of a quasi-classical approach, in
which case it is possible to use the mean values of observ-
ables of the harmonic oscillator in terms of quasi-classical
states, as given in Ref. [7], p. 740. Therefore, taking the
mean value on both sides of expression (14) considering
that Nd and the product x0ẋ0 are non-correlated quan-
tities, the following equation is obtained:

d
dt
〈x0ẋ0〉 =

〈
ẋ2

0

〉
+ iΩ 〈x0ẋ0〉 , (16)

where
Ω ≡ ωc 〈Nd〉 . (17)

The value of 〈Nd〉 for an electron with thermal energy
kT and with oscillator energy ~ωc can be found by using
Eq. (79) of Ref. [7], p. 740. This value is

〈Nd〉 =
kT

~ωc
, (18)

which, as seen in Eqs. (8), (15), is a rather large quantity.
At this point it is convenient to notice that Eq. (18) can
be rewritten as the ratio of two quantities, each of which
has the dimensions of a diffusion coefficient

〈Nd〉 =
ckT/qB

~/m
, (19)

which, as before, should be a very large quantity. It is no-
ticed here that the numerator is a Bohm-type coefficient
of diffusion and the denominator is a “quantum coeffi-

cient of diffusion”. Expression (19) will be interpreted in
the sense that the guiding center diffuses simultaneously
with those two coefficients of diffusion, the step size of
each one being deduced further below.

Assuming that the guiding center starts out at t = 0
at the position x0 = 0 and that

〈
ẋ2

0

〉
changes very slowly

in time, in agreement with the assumption made before,
so that it can be taken out of the time integration, the
general solution of Eq. (16) is written as

〈x0ẋ0〉 =

〈
ẋ2

0

〉

iΩ
[
eiΩt − 1

]
. (20)

Considering that the operations of taking both the time
derivative and the mean value of a physical quantity com-
mute [10], the left hand side of Eq. (20) can be written
as 〈x0ẋ0〉 = 1

2
d
dt

〈
x2

0

〉
; therefore, Eq. (20) becomes

d
dt

〈
x2

0

〉
=

2
〈
ẋ2

0

〉

iΩ
[
eiΩt − 1

]
. (21)

Integrating this equation using the same conditions as in
the integration of Eq. (16), the following expression is
obtained:

〈
x2

0

〉
= −2

〈
ẋ2

0

〉

Ω2

[
eiΩt − 1− iΩt

]
. (22)

It can be noticed, incidentally, that if Ω and
〈
ẋ2

0

〉
in

Eq. (22) are written as iγ and kT/m, respectively, the
form of Eq. (15.6.8) in Ref. [11] is recovered, although
this last expression is the solution of the Langevin equa-
tion for the motion of a Brownian particle.

Equation (22) can be rewritten as〈
x2

0

〉
=

〈
ẋ2

0

〉
t2f(θ), (23)

where the function f(θ) is given by the expression

f(θ) =
sin2θ

θ2
+ i

(
1
θ
− sin2θ

2θ2

)
, (24)

where θ = Ωt
2 .

Four facts may be readily noted from Eqs. (23) and
(24), viz.:

1. Expression (24) is such that f(−θ) = f∗(θ), which
means that its Fourier transform is real; the star
stands for “complex-conjugated”. This fact gives
the character of observable quantities, to the real
and imaginary parts of

〈
x2

0

〉
in Eq. (23).

2. The real and imaginary parts of Eq. (24) are mu-
tually orthogonal.

3. The real and imaginary parts of Eq. (24) are the
Hilbert transform of each other [12].

4. The real and imaginary parts of Eq. (24) fulfill the
Parseval relation, as it should be for pairs of expres-
sions that are related by the Hilbert transform.

As a consequence of these facts, expression (23) may
be considered as a dispersion relation in the time domain
where the real and imaginary parts, both observable, play
the emissive and dispersive (in this case diffusive) roles,
respectively. Figure 1 depicts the real and imaginary
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Fig. 1. Real (hB(θ)) and imaginary (dB(θ)) parts of
the function f(θ) given by Eq. (24) in text.

Fig. 2. Real (hL(θ)) and imaginary (dL(θ)) parts of the
function fL(θ) given by Eq. (25) in text.

parts of the expression f(θ) given by Eq. (24), as func-
tions of θ. For comparison purposes let us introduce the
Lorentzian dispersion relation fL(θ) given by

fL(θ) =
1

1 + θ2
+ i

θ

1 + θ2
. (25)

In this expression the real and imaginary parts are the
Hilbert transform of each other, physically representing
an absorptive-dispersive phenomenon in which the ab-
sorption part has a Lorentzian shape; Fig. 2 shows the
real and imaginary parts of Eq. (25).

Figure 3 depicts two DISPA (DISPersion-Absorption)
plots [13, 14] in which the real (imaginary) part is rep-
resented on the horizontal (vertical) axis; plot B corre-
sponds to Eq. (24) and for comparison plot L is drawn,
corresponding to the Lorentzian dispersion relation given

Fig. 3. DISPA plots of Eq. (24) (curve B) and Eq. (25)
(curve L). DISPA plot of Eq. (25) is a circumference of
radius 1/2.

by Eq. (25). The DISPA plot of Eq. (25) is a circumfer-
ence of radius 1/2. It is observed from Fig. 3 that plot
B represents a “spectrum” that is a broadened version of
the one represented by plot L (see Refs. [13, 14]); this
can also be visualized in Figs. 1, 2.

It is convenient to note here that the ratio kT/~ωc

(see Eq. (18)) is so large that the variable θ = Ωt/2 =
(〈Nd〉ωct)/2 spans every interesting feature in Figs. 1, 3
for a wide interval of time, in particular for 0 ≤ t ≤ Tc

which is the interval of interest in this paper, as was
mentioned in the introduction.

By looking at the symmetrical plot B in Fig. 3 from
right to left, an interesting feature to notice is that most
of the pattern belongs to a very small interval of time; for
example, the first zero of the function sin2θ/θ2, which ap-
pears at θ ≈ 3.15, corresponds to a time t ∼ 6.3/〈Nd〉ωc,
which is a very small quantity; this corresponds to the
uppermost point at which plot B touches the vertical
axis in Fig. 3. Only the smaller wavy structure of plot
B represents the diffusion phenomenon for longer times,
t ∼ Tc, as will be seen below.

In the following, the behavior of the real and imaginary
parts of Eq. (23) will be analyzed. The real part is

Re
〈
x2

0

〉
=

〈
ẋ2

0

〉
t2

sin2θ

θ2
. (26)

For θ ¿ 1 this expression reduces to
Re

〈
x2

0

〉
=

〈
ẋ2

0

〉
t2, (27)

which means that the guiding center moves freely during
a very short initial interval of time. The right hand side
of Eq. (27) agrees with the result of the usual analysis of
the mean square displacement of a Brownian particle by
means of the Langevin equation [11].
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Due to the behavior of the function sin2θ/θ2 for θ À 1,
see Fig. 1, Eq. (26) becomes

Re
〈
x2

0

〉 ≈ 0. (28)
In other words, the real part of Eq. (23) has importance
only during a very short initial interval of time.

In order to handle the imaginary part of expression
(23), i.e.

Im
〈
x2

0

〉
=

〈
ẋ2

0

〉
t2

(
1
θ
− sin2θ

2θ2

)
, (29)

it is necessary to go back to Eq. (20), which after some
treatment will serve to eliminate the factor

〈
ẋ2

0

〉
from

Eq. (29) in order to get an expression from which a diffu-
sion coefficient can be obtained. Accordingly, let us first
write Eq. (20) as a dimensionless expression in order to
get the probability of finding the system in a given state
of motion at time t. To do this, first let us multiply both
members by the electron mass m, which was assumed to
be located at the guiding center. Thus, an expression
with the dimensions of an action is obtained. Then by
dividing this expression by ~, a dimensionless quantity is
obtained. Finally, let us take the square of the absolute
value on both sides. The result is the following:

∣∣∣∣
〈x0mẋ0〉

~

∣∣∣∣
2

=
4

∣∣〈mẋ2
0

〉∣∣2 sin2 Ωt
2

~2Ω2
. (30)

The right hand side of Eq. (30) has the form of the expres-
sion obtained in first order perturbation theory for the
quantum mechanical probability of finding a system in a
given state [15]; in the present case, it is the probability
of finding the guiding center in the state of motion mẋ2

0

at time t under the action of the electric field produced
by the potential V (x, y) on the location of the guiding
center where the electron mass and charge were assumed
to be located.

Considering the comments made before concerning
plot B in Fig. 3, the time average of the right hand side
of Eq. (30) over a cyclotron period Tc is taken and made
equal to one, to indicate the certainty of occurrence of
reaching the state of motion mẋ2

0; the result is

2
∣∣〈mẋ2

0

〉∣∣2
~2Ω2

= 1 (31)
or

〈
ẋ2

0

〉
=

~Ω√
2m

. (32)

Remembering that the quantity ẋ0 on the left hand side
of this expression represents the drift velocity of the guid-
ing center, before going on with the calculation, this ve-
locity will be written in terms of the electric field gen-
erated by the potential V (x, y) in order to compare the
resulting expression with Spitzer Eq. (5), Ref. [3]. By
doing so and rearranging Eq. (32) using Eq. (17), the fol-
lowing expression for the mean square value of the electric
field is obtained:

〈
E2

y

〉
=

kTB2

√
2mc2

. (33)

It is seen that this expression is consistent with Spitzer
Eq. (5), Ref. [3], although there the mean square value

was taken over a set of particles.

Reassuming the calculation and substituting Eq. (32)
in Eq. (29), the following expression is obtained:

Im
〈
x2

0

〉
=

~Ω√
2m

t2
(

1
θ
− sin2θ

2θ2

)
. (34)

The right hand side of Eq. (34) tends to zero for θ ¿ 1
(see Fig. 1). Therefore, this expression, which is the
imaginary part of Eq. (23), is relevant only for large val-
ues of θ; indeed, due to the behavior of the functions
(sin2θ) /2θ2 and 1/θ for θ À 1, Eq. (34) yields the fol-
lowing expression:

Im
〈
x2

0

〉
=
√

2
~
m

t. (35)

If the displacement of the guiding center is considered as
a random walk, then the left hand side of Eq. (35) may
be written as

Im
〈
x2

0

〉
= 2Dt. (36)

By comparing Eqs. (35) and (36), the following expres-
sion for a quantum coefficient of diffusion for the guiding
center is obtained:

D =
1√
2
~
m

. (37)

To estimate the step-size in this diffusion process, a step-
-time of ω−1

c will be used in Eq. (34) for θ À 1; then
substituting t = ω−1

c there and taking into account that
〈Nd〉 À 1, the following expression is obtained:

Im
〈
x2

0

〉
=
√

2
~c
eB

≈
√

2 (∆r0)
2
, (38)

where the use of Eq. (7) was made. According to Eq. (38),
the step-size for quantum diffusion is of the order of the
linear dimensions of the uncertainty area of the guid-
ing center (see Eq. (7)). Therefore, the imaginary part
of Eq. (23) describes the process of the quantum diffu-
sion of the guiding center with the coefficient given by
Eq. (37).

In order to obtain the formula for the mean square dis-
placement for the case of the Bohm-type diffusion, it is
necessary to look at Eq. (19) which indicates that the
Bohm-type diffusion is 〈Nd〉 times as large as the quan-
tum diffusion. It is then expected that the mean square
displacement for the Bohm-type diffusion should also be
〈Nd〉 times as large as the one for quantum diffusion;
hence, the mean square displacement for Bohm-type dif-
fusion is〈

x2
0

〉
= 〈Nd〉

〈
ẋ2

0

〉
t2f(θ). (39)

From the foregoing work it follows that that the diffusion
coefficient should be obtained from the imaginary part of
Eq. (39) for θ À 1. Using Eq. (32), the following expres-
sion is obtained:

Im
〈
x2

0

〉
=
√

2
ckT

eB
t. (40)

As before, considering that the motion of the guiding
center is a random walk, by combining Eqs. (36) and
(40), the following Bohm-type coefficient of diffusion is
obtained:
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D =
1√
2

ckT

eB
. (41)

As can be seen, expression (41) is 16/
√

2 times as large
as the Bohm diffusion coefficient. To obtain the step-
-size for this process, use is made of the imaginary part
of Eq. (39) which is

Im
〈
x2

0

〉
= 〈Nd〉 ~Ω√

2m
t2

(
1
θ
− sin2θ

2θ2

)
, (42)

where Eq. (32) was substituted in (42). Now, for θ À 1
and using ω−1

c as a step-time, Eq. (42) reduces to

Im
〈
x2

0

〉
=
√

2
ν2
th

ω2
c

=
√

2ρ2
L. (43)

Then the step size in this diffusion process is of the or-
der of the Larmor radius, i.e. the guiding center passes
each time from the original location of its uncertainty
area to the location of the orbital uncertainty area pro-
voked by an external electrical fluctuation, thus produc-
ing the migration of the guiding center with this step size.
The step-size ρL is a known characteristic of the Bohm
diffusion.

5. Conclusion

An elementary quantum mechanical analysis of the
motion of the guiding center of a magnetically gyrating
plasma electron in the presence of an electrical potential
that simulates an electrical fluctuation was carried out in
this paper. The drift velocity of the guiding center was
first obtained, this information being used to write down
a quantummechanical equation of motion for the product
x0ẋ0. The solution of this equation led to the derivation
of two coefficients of diffusion as the imaginary part of the
average of the square of the guiding center displacement
in terms of quasi-classical states of the harmonic oscilla-
tor for the case θ À 1. These two coefficients are a “quan-
tum mechanical coefficient of diffusion” and a Bohm-type
coefficient of diffusion, which could be interpreted in the
sense that the guiding center diffuses simultaneously with
those two coefficients, the quantum mechanical coeffi-
cient being very small. Therefore, it could be said that
the diffusion phenomenon which is considered in this pa-
per has its origin in the quantum mechanical uncertainty
of the position of the guiding center as well as in the quan-
tum mechanical “spreading out” of the electron orbit and
is provoked by electric field fluctuations. Although the
main scaling of the Bohm-type coefficient with the mag-
netic field and the temperature is that of the well-known
Bohm coefficient, it should be mentioned that the model
employed here is a very crude one. Specifically, parti-
cle interactions which play a paramount role in plasma
processes were not taken into account as part of the hy-

pothesis and assumptions used in this work. This could
explain why one ends up with a coefficient which is 16/

√
2

times as large as the Bohm coefficient. Finally, as the
Bohm diffusion still eludes an explanation based on first
principles, both the hypothesis and the simple method
employed in this paper to obtain a Bohm-type coefficient
of diffusion, rendered a result which may encourage the
pursuit of further research on this issue.
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