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The dynamics of an impurity ion of charge q0 embedded in a two-component ionic plasma is represented
as that of a particle in a random medium. The effect of the surroundings on the impurity is represented by a
memory function whose form is proposed in this work. Our choice stands for the strongly coupled plasma for
which the memory function has an oscillatory behavior with the plasma frequency. The model therefore describes
the plasma in the strong coupling limit. We first derive a master equation governed by this memory function and,
with the help of the Laplace transform, we solve it via a quartic algebraic equation. We calculate in the end the
dynamical properties, i.e. the autocorrelation functions which are very useful in many areas of plasma physics as
in radiative transport and in spectral line shape broadening theories.
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1. Introduction

Equilibrium autocorrelation functions are of great im-
portance in the evaluation of the relaxation time in many
problems of physics [1–3]. This time represents the du-
ration of the memory effect on the process under inves-
tigation [4–7]. In order to take into account the effect of
an observable A on an observable B, we must know the
ratio between the relaxation times of the equilibrium au-
tocorrelation functions (AA) and (BB). This ratio will
then help in telling us what model is a good candidate
for representing the process. The calculation of equilib-
rium autocorrelation functions is based on the master
equation [8]. The latter depends on the memory func-
tion M(t) [9] which plays an important role in the elab-
oration of the model. By using an appropriate memory
function, we present in this work a model for calculat-
ing equilibrium autocorrelation functions relating to the
electric microfield and to the velocity of an ion which is
valid for the case of a strongly coupled plasma.

2. The model

The system considered here is an impurity ion of mass
m0 and charge q0 in equilibrum with a fully ionized
plasma of structureless point ions. The equilibrum auto-
correlation functions of the electric field and the velocity
are defined, respectively, by [9]
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C(t) = 〈E(t) ·E(0)〉 / 〈
E(0)2

〉

≡ 〈E(t) ·E〉 / 〈
E2

〉
, (1)

D(t) = 〈V 0(t) · V 0(0)〉 / 〈
V 2

0(0)
〉

≡ 〈V 0(t) · V 0〉 /
〈
V 2

0

〉
, (2)

where the brackets 〈. . .〉 denote an equilibrium Gibbs
ensemble average (the canonical one here), and V 0 is
the impurity ion velocity. The correlation function C(t)
measures the fluctuation in a collective property of the
two-component ionic plasma (TCIP) [8], while D(t) mea-
sures the fluctuation in a property of the impurity ion.
Besides, these are directly related via the first Newton
law by

d2D(t)
dt2

= −ω2
0C(t) (3)

with
ω2

0 =
(
βq2

0/3m0

) 〈
E2

〉
, (4)

and the function D(t) is given by the master equation
d2D(t)

dt2
+ ω2

0D(t) +
∫ t

0

dτM(t− τ)
dD(τ)

dτ
= 0. (5)

The initial conditions on D(t) are
D(t = 0) = 1, Ḋ(t = 0) = 0 (6)

and
M(0) = ω2

1 − ω2
0 , ω2

1 =
〈
Ė2

〉
/

〈
E2

〉
, (7)

where β = 1/kBT and Ė means the time derivative of
E(t) at t = 0. Equation (5) describes the impurity
ion dynamics as oscillations in a viscoelastic medium,
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where the characteristic frequency is ω0 and shows a fre-
quency dependent damping given by the Fourier trans-
form of M(t). All many-body effects of the medium
on the impurity that are not explicit in (5) are con-
tained in the detailed form of M(t). Our fundamental
assumption here is that it is sufficient to include only
the magnitude of this function through its exact initial
value M(0) = M0. Furthermore, this function M(t) must
take into account of plasma oscillation and the damping
through two time scales Ω−1 = ω−1

p the inverse of plasma
frequency) and λ−1.

Making use of the results presented in [10] (Eq. (30)),
we assume the following form of M(t):

M(t) = M0e−λt cosΩt, (8)
where Ω À λ. For all parameters we used in our calcu-
lations, the condition Ω À λ is always satisfied. The
parameter λ is fixed by the Green–Kubo expression for
the self-diffusion coefficient D in terms of the velocity
autocorrelation function as [8, 10]:

βm0D =
∫ ∞

0

dtD(t), (9)

λ =
(

ω2
1

ω2
0

− 1
)

/βm0D. (10)

The Laplace transform of Eq. (5) gives

∫ ∞

0

e−zt d
2D(t)
dt2

dt + ω2
0D̂(z)

+M̂(z)
∫ ∞

0

e−zt dD(t)
dt

dt = 0. (11)

Using the previous initial conditions of D(t), we find
that the solution of (11) can be expressed as

D̂(z) =
z + M̂(z)

z2 + zM̂(z) + ω2
0

, (12)

where M̂(z) is the Laplace transform of the memory
function M(t) given as

M̂(z) = M0

∫ ∞

0

exp(−zt− λt) cos(Ωt)dt

=
M0(z + λ)

(z + λ)2 + Ω2
. (13)

At the end, we find that the parameter Ω satisfies [8, 10]:

βm0D = lim
z→0

D̂(z) =
λM0

ω2
0(Ω2 + λ2)

, (14)

Ω2 =
M0

βm0Dω2
0

λ− λ2 (15)

and that the velocity autocorrelation function
transform is

D̂(z) =
z(z + λ)2 + zΩ2 + (z + λ)M0

z4 + 2λz3 + z2(Ω2 + λ2 + ω2
0 + M0) + z(M0λ + 2Ω2λ) + ω2

0(Ω2 + λ2)
. (16)

Equations (5)–(7) and (9) define the approximate
model for D(t) and, through Eq. (3), the electric field
autocorrelation function. Furthermore, the exact time
integrals of C(t) and D(t) are insured through (5)
and (8). The input data ω0, ω1, and D might be taken
directly from computer simulation or by an other suitable
model.

It is then straightforward to solve (5) by a Laplace
transformation, yielding D(t) and C(t) as the sum of
four exponentials

D(t) =
4∑

i=1

Diezit, (17)

C(t) =
4∑

i=1

Ciezit (18)

where the coefficients Di and Ci are given by
Di = −(ω0/zi)2Ci, (19)

C1 =
z1(z1 + λ)2 + z1Ω2

(z1 − z2)(z1 − z3)(z1 − z4)
, (20)

C2 =
z2(z2 + λ)2 + z2Ω2

(z2 − z3)(z2 − z4)(z2 − z1)
, (21)

C3 =
z3(z3 + λ)2 + z3Ω2

(z3 − z4)(z3 − z2)(z3 − z1)
, (22)

C4 =
z4(z4 + λ)2 + z4Ω2

(z4 − z1)(z4 − z2)(z4 − z3)
(23)

and the {zi} are solutions of the quartic equation (Ap-
pendix)

z4 + 2λz3 + z2(Ω2 + λ2 + ω2
0 + M0)

+z(M0λ + 2Ω2λ) + ω2
0(Ω2 + λ2) = 0. (24)

Depending on the values of λ, ω0, and ω1, the solutions
may be either real or complex. In principle, this theoret-
ical analysis applies for arbitrary interaction potentials
and plasma composition. We intended that this work is
of great interest and should provide a very powerful tool
to investigate many dynamic properties and transport
phenomena in ionized media such as a plasma and elec-
trolytic solutions. Note that the electric autocorrelation
function C(t) in Eq. (18) satisfies the initial conditions
C(0) = 1, Ċ(0) = 0, the same being true for D(t) as
shown in Fig. 1 for the indicated parameters.

3. Discussion

In this paper we have presented a theoretical model
for dynamical correlation functions in a two-component
plasma. The implementation of the plasma oscillations
is achieved by a proposed form of the memory function.



Model of Dynamical Correlation . . . 195

Fig. 1. Relaxation of the correlation function C(t)
and D(t) for 100% Ar17+, where the parameters ω0

and ω1 are given in units of plasma frequency ωp =(
4πnee

2/m0

)1/2, the time t is in the inverse plasma
frenquency units and ne is the electron density. The
coefficient D is given in unit ωpa2 (a = (3n/4π)1/3).

The oscillation modes are calculated by solving a quartic
algebraic equation. The solutions are complex (two con-
jugates of two) except in the limit of high temperatures
(then the solutions become real and no oscillations in the
correlation function are observed) where the model must
be dropped in favor of more adequate models [8].

Appendix: The solution of the fourth-order
algebraic equation

The solution of the fourth-order algebraic equation
z4 + az3 + bz2 + cz + d = 0 (A1)

is based on the resolution of a cubic equation.
By using the variable change z = x − a

4 , Eq. (A1)
takes the form

x4 + px2 + qx + r = 0 (A2)
with

p = b− 3a2

8
, q = c− ab

2
+

a3

8
and

r = d− ac

4
+

a2b

16
− 3

(a

4

)4

.

We look for a positive root y0 of the cubic equation
y3 + αy2 + βy + λ = 0 (A3)

with

α =
p

2
, β =

1
4

(
p2

4
− r

)
and λ = −

(a

8

)2

. (A4)

Next, one calculates the following quantities:

ϕ =
√

y0, ω1 =
√
−y0 − p

2
+

9
4ϕ

;

ω2 =
√
−y0 − p

2
− 9

4ϕ
. (A5)

The parameters ω1 and ω2, which can be real or com-
plex, give the roots of Eq. (A2) as

x1 = −ϕ + ω1 − a

4
, (A6)

x2 = −ϕ− ω1 − a

4
, (A7)

x3 = ϕ + ω2 − a

4
, (A8)

x4 = ϕ− ω2 − a

4
. (A9)

For the resolution of the cubic Eq. (A3):
y3 + αy2 + βy + λ = 0, (A10)

one calculates the following quantities:

p′ =
β

3
−

(α

3

)2

, q′ = 2
(α

3

)3

− αβ

3
+ λ,

r′ = q′2 + 4p′3, (A11)

s =
3

√
q′ +

√
r′

2
+

3

√
q′ −√r′

2
,

t =
3

√
q′ +

√
r′

2
− 3

√
q′ −√r′

2
. (A12)

1) if r′ > 0, the equation admits a real root and two
imaginary roots

y1 = s− α

3
, y2 =

s

2
+ i

(
t
√

3
2

)
,

y3 =
s

2
− i

(
t
√

3
2

)
, (A13)

2) if r′ = 0 and p′ = 0, the equation admits a triple
real root

y = −s− α

3
, (A14)

3) if r′ = 0 and p′ 6= 0, the equation admits two real
roots

y1 = −s− α

3
, y2 =

s

2
− α

3
, y2 = y3, (A15)

4) if r′ < 0, the equation admits the three real roots

y1 = −2
√
−p′ cos(θ), (A16)

y2 = −2
√
−p′ cos (θ + 120◦) , (A17)

y3 = −2
√
−p′ cos (θ + 240◦) , (A18)

where

θ =
1
3

arccos

(
q′

2
√
−p′3

)
. (A19)
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